二逼平衡树(树套树)

题目描述

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1. 1. 1.查询 k k k在区间内的排名
2. 2. 2.查询区间内排名为 k k k的值
3. 3. 3.修改某一位值上的数值
4. 4. 4.查询 k k k在区间内的前驱(前驱定义为小于 x x x,且最大的数)
5. 5. 5.查询 k k k在区间内的后继(后继定义为大于 x x x,且最小的数)

输入格式

第一行两个数 n , m n,m n,m 表示长度为 n n n的有序序列和 m m m个操作
第二行有 n n n个数,表示有序序列
下面有 m m m行, o p t opt opt表示操作标号
o p t = 1 opt=1 opt=1 则为操作 1 1 1,之后有三个数 l , r , k l,r,k l,r,k 表示查询 k k k在区间 [ l , r ] [l,r] [l,r]的排名
o p t = 2 opt=2 opt=2 则为操作 2 2 2,之后有三个数 l , r , k l,r,k l,r,k 表示查询区间 [ l , r ] [l,r] [l,r]内排名为 k k k的数
o p t = 3 opt=3 opt=3 则为操作 3 3 3,之后有两个数 p o s , k pos,k pos,k 表示将 p o s pos pos位置的数修改为 k k k
o p t = 4 opt=4 opt=4 则为操作 4 4 4,之后有三个数 l , r , k l,r,k l,r,k 表示查询区间 [ l , r ] [l,r] [l,r] k k k的前驱
o p t = 5 opt=5 opt=5 则为操作 5 5 5,之后有三个数 l , r , k l,r,k l,r,k 表示查询区间 [ l , r ] [l,r] [l,r] k k k的后继

输出格式

对于操作 1 , 2 , 4 , 5 1,2,4,5 1,2,4,5各输出一行,表示查询结果

样例输入

6 6 6
4 4 4 2 2 2 2 2 2 1 1 1 9 9 9 4 4 4 0 0 0 1 1 1 1 1 1
2 2 2 1 1 1 4 4 4 3 3 3
3 3 3 4 4 4 10 10 10
2 2 2 1 1 1 4 4 4 3 3 3
1 1 1 2 2 2 5 5 5 9 9 9
4 4 4 3 3 3 9 9 9 5 5 5
5 5 5 2 2 2 8 8 8 5 5 5

样例输出

2 2 2
4 4 4
3 3 3
4 4 4
9 9 9

提示

1. 1. 1. n n n m m m的数据范围: n , m ≤ 50000 n,m≤50000 n,m50000
2. 2. 2.序列中每个数的数据范围: [ 0 , 1 e 8 ] [0,1e8] [0,1e8]
3. 3. 3.虽然原题没有,但事实上 5 5 5操作的 k k k可能为负数


前言:

线段树通常用来解决区间上的问题,而平衡树可以支持查询排名、前驱、后继、第 k k k小等问题。
如果要支持动态的区间上的上述问题,就必须用树套树这种神奇的数据结构。(可能还有别的做法吧,但本蒟蒻只会线段树套平衡树)
具体来说,用线段树对原序列进行划分,每个节点上开一颗平衡树,用来维护该段区间元素权值的信息。


举个栗子:

设原序列是 4 4 4 2 2 2 3 3 3 1 1 1 9 9 9 4 4 4 5 5 5 1 1 1
那么将原序列构造一颗线段树,如下图所示
一张异常丑陋的图
如果要在第 2 2 2~ 7 7 7个元素中求 7 7 7的后继,那么我们就可以在 [ 2 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] , [ 7 , 7 ] [2,2],[3,4],[5,6],[7,7] [2,2],[3,4],[5,6],[7,7]中分别求出 7 7 7的后继为 + ∞ , + ∞ , 9 , + ∞ +∞,+∞,9,+∞ +,+,9,+,对这些值取 m i n min min即可。
那么求前驱、排名也是类似的
关于如何求第 k k k小数,我们可以二分答案, 求最大的 x x x,使得在 [ l , r ] [l,r] [l,r]中比 x x x小的数的个数为 k − 1 k-1 k1


时空复杂度分析:

  1. 空间复杂度:
    线段树的树高是 O ( log ⁡ n ) O(\log n) O(logn),而线段树上每一层区间的并集都是 n n n,即每一层的空间复杂度是 O ( n ) O(n) O(n)的,所以总复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)
  2. 时间复杂度
    对于求前驱、后继和排名,原询问区间会在线段树上划分成 O ( log ⁡ n ) O(\log n) O(logn)段区间,在每段区间中查询信息时间复杂度是 O ( log ⁡ n ) O(\log n) O(logn)的,所以总时间复杂度为 O ( log ⁡ 2 n ) O(\log^2 n) O(log2n)
    对于求第 k k k小,因为需要二分答案,所以在配合对原序列和修改的值离散化的情况下可以做到 O ( log ⁡ 3 n ) O(\log^3 n) O(log3n)(当然本人很懒,而且此题对常数没有太大的要求,就没有离散化)

代码

#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 50005;
const int maxq = 10005;
const int maxt = 2000005;
const int oo = 2147483647;
int a[maxn];
int max(int x, int y) {return x > y ? x : y;}
int min(int x, int y) {return x < y ? x : y;}
int read() {
	char ch = getchar(); bool f = 1;
	while(ch < '0' || ch > '9') f &= ch != '-', ch = getchar();
	int res = 0;
	while(ch >= '0' && ch <= '9') res = (res << 3) + (res << 1) + (ch ^ 48), ch = getchar();
	return f ? res : -res;
}
void write(int x) {
	if(x < 0) x = -x, putchar('-');
	int len = 0, res[15];
	for(; x; res[++len] = x % 10, x /= 10);
	for(int i = len; i >= 1; i--) putchar(res[i] + 48);
	if(!len) putchar('0');
}
class Treap {
	private:
		static int cnt;
		static struct node {int son[2], val, pri, cnt, siz;} t[maxt];
		inline int build(int val) {
			t[++cnt] = (node) {{0, 0}, val, rand(), 1, 1};
			return cnt;
		}
		inline void update(int p) {t[p].siz = t[t[p].son[0]].siz + t[p].cnt + t[t[p].son[1]].siz;}
		void rotate(int &p, bool d) {
			int k = t[p].son[d];
			t[p].son[d] = t[k].son[d ^ 1];
			t[k].son[d ^ 1] = p;
			update(p); update(p = k);
		}
	public:
		int rt;
		inline void clear() {rt = 0;}
		void insert(int &p, int val) {
			if(!p) {p = build(val); return;}
			t[p].siz++;
			if(t[p].val == val) {t[p].cnt++; return;}
			bool d = t[p].val < val;
			insert(t[p].son[d], val);
			if(t[p].pri > t[t[p].son[d]].pri) rotate(p, d);
		}
		void remove(int &p, int val) {
			if(t[p].val == val) {
				if(t[p].cnt > 1) {t[p].cnt--; t[p].siz--; return;}
				if(!t[p].son[0] || !t[p].son[1]) {p = t[p].son[0] + t[p].son[1]; return;}
				bool d = t[t[p].son[0]].pri > t[t[p].son[1]].pri;
				rotate(p, d); remove(p, val);
				return;
			}
			t[p].siz--;
			bool d = t[p].val < val;
			remove(t[p].son[d], val);
		}
		int lower(int p, int val) {
			if(!p) return 0;
			if(t[p].val > val) return lower(t[p].son[0], val);
			if(t[p].val == val) return t[t[p].son[0]].siz;
			return t[t[p].son[0]].siz + t[p].cnt + lower(t[p].son[1], val);
		}
		int kth(int p, int rnk) {
			if(!p) return 0;
			if(t[t[p].son[0]].siz >= rnk) return kth(t[p].son[0], rnk);
			if(t[t[p].son[0]].siz + t[p].cnt >= rnk) return t[p].val;
			return kth(t[p].son[1], rnk - t[t[p].son[0]].siz - t[p].cnt);
		}
		int pre(int p, int val) {
			if(!p) return -oo;
			if(t[p].val >= val) return pre(t[p].son[0], val);
			return max(t[p].val, pre(t[p].son[1], val));
		}
		int suc(int p, int val) {
			if(!p) return oo;
			if(t[p].val <= val) return suc(t[p].son[1], val);
			return min(t[p].val, suc(t[p].son[0], val));
		}
} sgt[maxn << 2];
int Treap::cnt = 0;
Treap::node Treap::t[maxt];
void build(int p, int l, int r) {
	sgt[p].clear();
	for(int i = l; i <= r; i++) sgt[p].insert(sgt[p].rt, a[i]);
	if(l == r) return;
	int mid = l + r >> 1;
	build(p + p, l, mid);
	build(p + p + 1, mid + 1, r);
}
int query_lower(int p, int l, int r, int x, int y, int k) {
	if(l == x && r == y) return sgt[p].lower(sgt[p].rt, k);
	int mid = l + r >> 1;
	if(y <= mid) return query_lower(p + p, l, mid, x, y, k);
	else if(x > mid) return query_lower(p + p + 1, mid + 1, r, x, y, k);
	else return query_lower(p + p, l, mid, x, mid, k) + query_lower(p + p + 1, mid + 1, r, mid + 1, y, k);
}
int query_pre(int p, int l, int r, int x, int y, int k) {
	if(l == x && r == y) return sgt[p].pre(sgt[p].rt, k);
	int mid = l + r >> 1;
	if(y <= mid) return query_pre(p + p, l, mid, x, y, k);
	else if(x > mid) return query_pre(p + p + 1, mid + 1, r , x, y, k);
	else return max(query_pre(p + p, l, mid, x, mid, k), query_pre(p + p + 1, mid + 1, r, mid + 1, y, k));
}
int query_suc(int p, int l, int r, int x, int y, int k) {
	if(l == x && r == y) return sgt[p].suc(sgt[p].rt, k);
	int mid = l + r >> 1;
	if(y <= mid) return query_suc(p + p, l, mid, x, y, k);
	else if(x > mid) return query_suc(p + p + 1, mid + 1, r , x, y, k);
	else return min(query_suc(p + p, l, mid, x, mid, k), query_suc(p + p + 1, mid + 1, r, mid + 1, y, k));
}
void update(int p, int l, int r, int x, int k) {
	sgt[p].remove(sgt[p].rt, a[x]); sgt[p].insert(sgt[p].rt, k);
	if(l == r) return;
	int mid = l + r >> 1;
	if(x <= mid) update(p + p, l, mid, x, k);
	else update(p + p + 1, mid + 1, r, x, k);
}
int main() {
	int n = read(), q = read();
	for(int i = 1; i <= n; i++) a[i] = read();
	build(1, 1, n);
	while(q--) {
		int opt = read();
		if(opt == 1) {
			int l = read(), r = read(), k = read();
			write(query_lower(1, 1, n, l, r, k) + 1), putchar('\n');
		}
		if(opt == 2) {
			int l = read(), r = read(), k = read();
			int L = 0, R = 1e8;
			while(L < R) {
				int mid = L + R + 1 >> 1;
				if(query_lower(1, 1, n, l, r, mid) < k) L = mid;
				else R = mid - 1;
			}
			write(R), putchar('\n');
		}
		if(opt == 3) {
			int pos = read(), k = read();
			update(1, 1, n, pos, k);
			a[pos] = k;
		}
		if(opt == 4) {
			int l = read(), r = read(), k = read();
			write(query_pre(1, 1, n, l, r, k)), putchar('\n');
		}
		if(opt == 5) {
			int l = read(), r = read(), k = read();
			write(query_suc(1, 1, n, l, r, k)), putchar('\n');
		}
	}
	return 0;
}
  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值