约瑟夫问题小结

引入

约瑟夫问题是一个经典问题:

n n n个人排成一个环,第1个人从1开始报数,如果报到 k k k的倍数那么出列,让你求出出列顺序/最后剩下谁.

暴力

我们用链表维护相连关系,那么可以 O ( n k ) O(nk) O(nk)求解.
但是复杂度实在过高了.

d p dp dp优化

这个只能求最后剩余的人.
为了方便我们令编号从0开始.
f [ i ] f[i] f[i]表示长度为 i i i的约瑟夫问题最后剩下的编号.
那么有 f [ n ] = ( f [ n − 1 ] + k ) m o d    n f[n]=(f[n-1]+k)\mod n f[n]=(f[n1]+k)modn.
因为当前局面删除 k − 1 k-1 k1,我们给 k k k编号0, k + 1 k+1 k+1编号1…
那么转化一下就是上面的求法啦.

#include <bits/stdc++.h>
using namespace std;

int main() { 
    ios::sync_with_stdio(false);
    int n,k;
    cin >> n >> k;
    int ans=0;
    for(int i=1;i<=n;i++) (ans += k) %= i;
    printf("%d\n",ans+1);
	return 0;
}

数据结构优化

这是在 O ( n log ⁡ n ) O(n\log n) O(nlogn)下求出整个序列的做法.

题目:
x x x k − k- k约瑟夫变化后的序列.

我们记 p o s pos pos为上一个删除的元素的排名,初始 p o s = 0 pos=0 pos=0.
那么对于第 i i i次操作,我们就要找 ( p o s − 1 + k − 1 ) % ( n − i + 1 ) + 1 (pos-1+k-1)\%(n-i+1)+1 (pos1+k1)%(ni+1)+1大的位置.
用树状数组维护一下合法位置的前缀个数即可.

然后用快速幂结合一下置换即可.

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;

int n,m,f[N],g[N],a[N],c[N];

void qr(int &x) {scanf("%d",&x); }

void add(int x,int d) {for( ;x<=n;x+=x&-x) c[x]+=d;}
int ask(int k) {
    int y=0;
    for(int i=18;i>=0;i--)
        if(y+(1<<i)<=n&&c[y+(1<<i)]<k) 
            y+=1<<i,k-=c[y];
    return y+1;
}

int main() {
    qr(n); qr(m);
    for(int i=1;i<=n;i++) a[i]=i;
    while(m--) {
        int k,x; qr(k); qr(x);
        for(int i=1;i<=n;i++) c[i]=i&-i;
        int pos=1;
        for(int i=1,j;i<=n;i++)
            f[j=ask(pos=(pos-1+k-1)%(n-i+1)+1)]=i,
            add(j,-1);
        while(x) {
            if(x&1) {
                for(int i=1;i<=n;i++) c[f[i]]=a[i];
                for(int i=1;i<=n;i++) a[i]=c[i];
            }
            for(int i=1;i<=n;i++) g[i]=f[f[i]];
            for(int i=1;i<=n;i++) f[i]=g[i];
            x /= 2;
        }
    }
    for(int i=1;i<=n;i++) printf("%d ",a[i]);
    return 0;
}

n n n较大, k k k较小的情况

题目
观察上面的DP方程.
f [ i ] = ( f [ i − 1 ] + k ) m o d    n f[i]=(f[i-1]+k)\mod n f[i]=(f[i1]+k)modn.
实际上 m o d    n \mod n modn只有在 f [ i − 1 ] + k ≥ n f[i-1]+k\ge n f[i1]+kn的情况 m o d    n \mod n modn发挥作用.
所以我们用追及问题的方法求即可.

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll n,k,t,ans,s;

int main() {
    cin>>n>>k;
    while(s<n) {
        ll t=min((s-ans-1)/(k-1)+1,n-s); s += t;
        ans=(ans+t*k)%s;
    }
    cout<<ans+1;
}

可以发现 k k k次就能达到原来的两倍,所以复杂度为 O ( k log ⁡ n ) O(k\log n) O(klogn).

如果我们推广到 lg ⁡ n ≤ 100 \lg n\le 100 lgn100也是可做的,就是高精度取 min ⁡ \min min 要一个 100 100 100的常数罢了.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值