【文献阅读】LPI Radar Signals Modulation Recognition in Complex Multipath Environment Based on Improved

摘要

低截获概率(LPI)雷达由于难以被非合作拦截机截获,在现代雷达系统中发挥着重要作用。低截获概率雷达信号的调制方式日趋复杂,给复杂电磁环境下雷达信号的准确识别带来了一定的困难。针对这一问题,提出了一种复杂多径电磁环境下低截获概率雷达调制信号的自动识别框架。该方法首先利用时频分析(TFA)技术将雷达时域信号转换为时频分布图像,然后在预处理阶段利用自适应模糊推理系统(ANFIS)进行自适应滤波,以增强信号在低信噪比(SNR)下的时频特性。在雷达信号的自动识别阶段,利用深度学习提取信号时频图的固有特征,设计了一种结合联合损失函数的注意力分离网络ResNeSt.实验结果表明,与现有的雷达信号自动调制识别(AMR)方法相比,该框架在复杂电磁环境下具有更高的识别精度,并且对多径叠加效应具有较强的鲁棒性。当信噪比低至-12dB时,对10种典型的低截获概率雷达信号的平均识别率达到96.75%

主要方法

本文提出了一种在复杂多径电磁环境中对低截获概率(LPI)雷达调制信号进行自动识别的框架,主要方法包括:

  1. 信号预处理
    • 时频分析(TFA)技术:利用平滑伪维格纳威利分布(SPWVD)将雷达时域信号转换为时频分布图像(TFI),SPWVD可抑制交叉项并节省计算成本。
    • 自适应滤波:在预处理阶段使用自适应神经模糊推理系统(ANFIS)对信号进行自适应滤波,以增强低信噪比(SNR)下信号的时频特性,减少高斯白噪声和有色噪声对TFI的损害。
  2. 信号分类
    • 特征提取网络:采用改进的深度卷积神经网络ResNeSt提取信号TFI的高维特征,ResNeSt通过堆叠Split Attention模块,动态调整跨通道注意力和感受野,具有更强的特征提取能力。
    • 改进损失函数:设计基于中心损失函数和标签平滑策略的联合损失函数,增加不同类信号间的特征距离,缩短同类信号的特征距离,使同类信号在特征空间中聚类效果更好,同时抑制模型过拟合问题。

特征提取网络在本文中用于提取低截获概率(LPI)雷达信号时频分布图像(TFI)的高维特征,具体如下:

  1. 网络选择:采用改进的深度卷积神经网络ResNeSt,它是ResNet的变体,通过堆叠Split Attention模块,能够动态调整跨通道注意力和感受野,从而展现出更强的特征提取能力。
  2. 网络结构
    • 分组与分割操作:输入图像特征后,先将其划分为K个父组,每个父组再进一步分割为R个子组,使得图像特征经过“先分组后分割”的操作,共得到G = K * R个切片。
    • 卷积与注意力模块:每个子组内分别进行卷积操作,然后将R个子组输入到分心模块(distraction module)。该模块模仿SK注意力机制,为每个子组的特征分配不同权重,其输出特征由R个子组的特征融合而成。
    • 特征聚合与输出:最后,K个父组的特征进行聚合、卷积,并与残差模块输出的特征进行线性组合,作为最终的输出特征。
  3. 整体效果:这种结构设计使得ResNeSt在处理LPI雷达信号时,能够有效提取其特征,提高后续信号分类识别的准确性。
    以图像的方式去对信号的调制方式进行分类。
    本文的主要工作如下:
    1)提出了一种低截获概率信号自动调制识别框架,将网络的训练和预测分为两个并行过程,增强了复杂电磁环境下信号识别的泛化能力。
    2)在信号预测阶段,结合ANFIS,降低噪声对信号分析的不利影响,在低信噪比下有效削弱色噪声对TFI的破坏。
    3)提出了一种具有联合损失的轻量级分裂注意网络,该网络在保持低网络层数的同时保持高识别精度。

LPI雷达信号在数学上表示为
在这里插入图片描述
A是信号的幅度
r e c t ( ) rect() rect()是门函数
f(t)是信号的瞬时频率

在这里插入图片描述
下面是15个LPI雷达的信号
在这里插入图片描述

低截获概率雷达辐射源信号的AMR需要波形的时间序列分析,它可以将一维时间序列信号波形转换为二维时间序列信号波形。由于非合作方截获的信号信噪比一般较低,WVD和CWD是雷达信号侦察中常用的TFA。

雷达信号的WVD如下:
在这里插入图片描述

其中t和f是时间和频率,τ表示时间延迟。SPWVD是一种基于WVD的改进的TFA方法:
在这里插入图片描述
其中g(u)和h(τ)表示时域窗函数和频域窗函数,该窗函数分别在时域和频域起到平滑和滤波的作用,有效地抑制了交叉项的产生。与WVD相比,TFI中交叉项的负面影响有所减弱。我们定义了15个LPI雷达波形如表一所示,LPI雷达调制信号的SPWVD时频分布图像如图1所示。
在这里插入图片描述
噪声分析

雷达信号在复杂电磁环境中的传输过程中,存在着许多非理想因素,如天线噪声、电路噪声、多径衰落、大气衰减和多普勒频移等,都会导致信号质量的下降。为了模拟复杂多径电磁环境下的信号污染,研究了高斯白色噪声、有色噪声、多径衰落和载频随机干扰。

雷达信号中的白色高斯噪声主要来自雷达前端电路中的热噪声和放大器引起的噪声。色噪声与白色高斯噪声的区别在于能量在频率范围内分布不均匀,其功率谱密度是频率的函数。雷达信号中有色噪声的影响类似于高斯白色噪声,会降低信噪比。有色噪声通常源自非理想的信号处理组件。例如,在信号放大阶段,信号中的噪声将被同步放大。

多径衰落效应是指雷达信号在传输过程中经过多条路径,每条路径的传播距离和时间不同,导致不同信号相位叠加,从而产生干扰。雷达载频随机干扰是指由于电磁环境的复杂性和电磁波的传播特性,对雷达接收信号中载频产生的随机干扰。电磁环境的日益复杂主要体现在信号的传播环境上,如图2所示的雷达信号在海面应用场景中的复杂多径电磁环境。

结论

提出了一种新的低截获概率雷达辐射源信号自动识别方案,能够在低信噪比、色噪声和复杂多径电磁环境下实现高精度的识别。从两个方面对现有的低截获概率雷达信号识别方法进行了改进。首先,提出了一种新的去噪预处理操作与ANFIS相结合,以增强信号在低信噪比、有色噪声和复杂多径情况下的时频特性;其次,在识别阶段设计了联合损失函数,以更有效地训练ResNeSt模型。仿真结果表明,与其他已发表文献的研究方法相比,本文提出的自动识别框架具有更好的抗噪声能力,对有色噪声污染和复杂多径效应具有较强的鲁棒性,能够满足复杂电磁环境下潜在的工程应用需求。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sol-itude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值