comments: true
difficulty: 中等
edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9846.%20%E6%8A%8A%E6%95%B0%E5%AD%97%E7%BF%BB%E8%AF%91%E6%88%90%E5%AD%97%E7%AC%A6%E4%B8%B2/README.md
面试题 46. 把数字翻译成字符串
题目描述
给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a” ,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。
示例 1:
输入: 12258
输出: 5
解释: 12258有5种不同的翻译,分别是"bccfi", "bwfi", "bczi", "mcfi"和"mzi"
提示:
0 <= num < 231
解法
方法一:记忆化搜索
我们先将数字 num
转为字符串
s
s
s,字符串
s
s
s 的长度记为
n
n
n。
然后我们设计一个函数 d f s ( i ) dfs(i) dfs(i),表示从第 i i i 位数字开始的不同翻译的数目。那么答案就是 d f s ( 0 ) dfs(0) dfs(0)。
函数 d f s ( i ) dfs(i) dfs(i) 的计算如下:
- 如果 i ≥ n − 1 i \ge n - 1 i≥n−1,说明已经翻译到最后一个数字,只有一种翻译方法,返回 1 1 1;
- 否则,我们可以选择翻译第 i i i 位数字,此时翻译方法数目为 d f s ( i + 1 ) dfs(i + 1) dfs(i+1);如果第 i i i 位数字和第 i + 1 i + 1 i+1 位数字可以组成一个有效的字符(即 s [ i ] = = 1 s[i] == 1 s[i]==1 或者 ( s [ i ] = = 2 s[i] == 2 s[i]==2 且 s [ i + 1 ] < 6 s[i + 1] \lt 6 s[i+1]<6)),那么我们还可以选择翻译第 i i i 和第 i + 1 i + 1 i+1 位数字,此时翻译方法数目为 d f s ( i + 2 ) dfs(i + 2) dfs(i+2)。因此 d f s ( i ) = d f s ( i + 1 ) + d f s ( i + 2 ) dfs(i) = dfs(i+1) + dfs(i+2) dfs(i)=dfs(i+1)+dfs(i+2)。
过程中我们可以使用记忆化搜索,将已经计算过的 d f s ( i ) dfs(i) dfs(i) 的值存储起来,避免重复计算。
时间复杂度 O ( log n u m ) O(\log num) O(lognum),空间复杂度 O ( log n u m ) O(\log num) O(lognum)。其中 n u m num num 为给定的数字。
Python3
class Solution:
def translateNum(self, num: int) -> int:
@cache
def dfs(i):
if i >= n - 1: #第i-1位数字往后只有一种翻译方式
return 1
ans = dfs(i + 1)
if s[i] == "1" or (s[i] == "2" and s[i + 1] < "6"):#核心:当有两位数字且不大于26时,就会出现两种翻译方式,从而翻译种数dfs(i)=dfs(i+1)+dfs(i+1)
ans += dfs(i + 2)
return ans
s = str(num)
n = len(s)
return dfs(0)
Java
class Solution {
private int n;
private char[] s;
private Integer[] f;
public int translateNum(int num) {
s = String.valueOf(num).toCharArray();
n = s.length;
f = new Integer[n];
return dfs(0);
}
private int dfs(int i) {
if (i >= n - 1) {
return 1;
}
if (f[i] != null) {
return f[i];
}
int ans = dfs(i + 1);
if (s[i] == '1' || (s[i] == '2' && s[i + 1] < '6')) {
ans += dfs(i + 2);
}
return f[i] = ans;
}
}
C++
class Solution {
public:
int translateNum(int num) {
string s = to_string(num);
int n = s.size();
int f[12]{};
function<int(int)> dfs = [&](int i) -> int {
if (i >= n - 1) {
return 1;
}
if (f[i]) {
return f[i];
}
int ans = dfs(i + 1);
if (s[i] == '1' || (s[i] == '2' && s[i + 1] < '6')) {
ans += dfs(i + 2);
}
return f[i] = ans;
};
return dfs(0);
}
};
Go
func translateNum(num int) int {
s := strconv.Itoa(num)
n := len(s)
f := [12]int{}
var dfs func(int) int
dfs = func(i int) int {
if i >= n-1 {
return 1
}
if f[i] != 0 {
return f[i]
}
ans := dfs(i + 1)
if s[i] == '1' || (s[i] == '2' && s[i+1] < '6') {
ans += dfs(i + 2)
}
f[i] = ans
return ans
}
return dfs(0)
}
TypeScript
function translateNum(num: number): number {
const s = num.toString();
const n = s.length;
const f = new Array(n).fill(0);
const dfs = (i: number): number => {
if (i >= n - 1) {
return 1;
}
if (f[i]) {
return f[i];
}
let ans = dfs(i + 1);
if (s[i] === '1' || (s[i] === '2' && s[i + 1] < '6')) {
ans += dfs(i + 2);
}
f[i] = ans;
return ans;
};
return dfs(0);
}
Rust
impl Solution {
pub fn translate_num(num: i32) -> i32 {
let mut a = 1;
let mut b = 1;
let str = num.to_string();
for i in 0..str.len() - 1 {
let c = a + b;
a = b;
let num = str[i..i + 2].parse::<i32>().unwrap();
if num >= 10 && num < 26 {
b = c;
}
}
b
}
}
JavaScript
/**
* @param {number} num
* @return {number}
*/
var translateNum = function (num) {
const s = num.toString();
const n = s.length;
const f = new Array(n).fill(0);
const dfs = i => {
if (i >= n - 1) {
return 1;
}
if (f[i]) {
return f[i];
}
let ans = dfs(i + 1);
if (s[i] === '1' || (s[i] === '2' && s[i + 1] < '6')) {
ans += dfs(i + 2);
}
f[i] = ans;
return ans;
};
return dfs(0);
};
C#
public class Solution {
public int TranslateNum(int num) {
var s = num.ToString();
int n = s.Length;
int a = 1, b = 1;
for (int i = 1; i < n; ++i) {
int c = b;
if (s[i - 1] == '1' || (s[i - 1] == '2' && s[i] < '6')) {
c += a;
}
a = b;
b = c;
}
return b;
}
}
Swift
class Solution {
private var n: Int = 0
private var s: [Character] = []
private var memo: [Int?] = []
func translateNum(_ num: Int) -> Int {
s = Array(String(num))
n = s.count
memo = [Int?](repeating: nil, count: n)
return dfs(0)
}
private func dfs(_ i: Int) -> Int {
if i >= n - 1 {
return 1
}
if let cachedResult = memo[i] {
return cachedResult
}
var ans = dfs(i + 1)
if s[i] == "1" || (s[i] == "2" && s[i + 1] < "6") {
ans += dfs(i + 2)
}
memo[i] = ans
return ans
}
}
方法二:动态规划
我们可以将方法一中的记忆化搜索改为动态规划。
定义 f [ i ] f[i] f[i] 表示前 i i i 个数字的不同翻译的数目,那么答案就是 f [ n ] f[n] f[n]。初始化 f [ 0 ] = 1 f[0] = 1 f[0]=1, f [ 1 ] = 1 f[1] = 1 f[1]=1。
我们可以从前往后计算 f [ i ] f[i] f[i] 的值,对于每个 i i i,我们可以选择翻译第 i i i 个数字,此时翻译方法数目为 f [ i − 1 ] f[i - 1] f[i−1];如果第 i − 1 i-1 i−1 个数字和第 i i i 个数字可以组成一个有效的字符(即 s [ i − 1 ] = = 1 s[i - 1] == 1 s[i−1]==1 或者 s [ i − 1 ] = = 2 s[i - 1] == 2 s[i−1]==2 且 s [ i ] < 6 s[i] \lt 6 s[i]<6),那么我们还可以选择翻译第 i − 1 i - 1 i−1 和第 i i i 个数字,此时翻译方法数目为 f [ i − 2 ] f[i - 2] f[i−2]。因此 f [ i ] = f [ i − 1 ] + f [ i − 2 ] f[i] = f[i-1] + f[i-2] f[i]=f[i−1]+f[i−2]。
由于 f [ i ] f[i] f[i] 只与 f [ i − 1 ] f[i - 1] f[i−1] 和 f [ i − 2 ] f[i - 2] f[i−2] 有关,因此我们可以只用两个变量来存储 f [ i − 1 ] f[i - 1] f[i−1] 和 f [ i − 2 ] f[i - 2] f[i−2] 的值,从而省去数组 f f f 的空间。
时间复杂度 O ( log n u m ) O(\log num) O(lognum),空间复杂度 O ( log n u m ) O(\log num) O(lognum)。其中 n u m num num 为给定的数字。
Python3
class Solution:
def translateNum(self, num: int) -> int:
s = str(num)
n = len(s)
a = b = 1
for i in range(2, n+1):
c = b
if s[i - 2] == '1' or (s[i - 2] == '2' and s[i-1] < '6'):#注意:第i个数字对应第i-1位
c += a
a, b = b, c
return b
Java
class Solution {
public int translateNum(int num) {
char[] s = String.valueOf(num).toCharArray();
int n = s.length;
int a = 1, b = 1;
for (int i = 1; i < n; ++i) {
int c = b;
if (s[i - 1] == '1' || (s[i - 1] == '2' && s[i] < '6')) {
c += a;
}
a = b;
b = c;
}
return b;
}
}
C++
class Solution {
public:
int translateNum(int num) {
string s = to_string(num);
int n = s.size();
int a = 1, b = 1;
for (int i = 1; i < n; ++i) {
int c = b;
if (s[i - 1] == '1' || (s[i - 1] == '2' && s[i] < '6')) {
c += a;
}
a = b;
b = c;
}
return b;
}
};
Go
func translateNum(num int) int {
s := strconv.Itoa(num)
n := len(s)
a, b := 1, 1
for i := 1; i < n; i++ {
c := b
if s[i-1] == '1' || (s[i-1] == '2' && s[i] < '6') {
c += a
}
a, b = b, c
}
return b
}
TypeScript
function translateNum(num: number): number {
const s = num.toString();
const n = s.length;
let a = 1;
let b = 1;
for (let i = 1; i < n; ++i) {
let c = b;
if (s[i - 1] === '1' || (s[i - 1] === '2' && s[i] < '6')) {
c += a;
}
a = b;
b = c;
}
return b;
}
Rust
impl Solution {
fn dfs(s: &String, i: usize, res: &mut i32) {
if i >= s.len() {
return;
}
let val = s[i - 1..=i].parse::<i32>().unwrap();
if val >= 10 && val <= 25 {
*res += 1;
Self::dfs(s, i + 2, res);
}
Self::dfs(s, i + 1, res);
}
pub fn translate_num(num: i32) -> i32 {
let s = num.to_string();
let mut res = 1;
Self::dfs(&s, 1, &mut res);
res
}
}
JavaScript
/**
* @param {number} num
* @return {number}
*/
var translateNum = function (num) {
const s = num.toString();
const n = s.length;
let a = 1;
let b = 1;
for (let i = 1; i < n; ++i) {
let c = b;
if (s[i - 1] === '1' || (s[i - 1] === '2' && s[i] < '6')) {
c += a;
}
a = b;
b = c;
}
return b;
};