47. 礼物的最大价值


comments: true
difficulty: 中等
edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9847.%20%E7%A4%BC%E7%89%A9%E7%9A%84%E6%9C%80%E5%A4%A7%E4%BB%B7%E5%80%BC/README.md

面试题 47. 礼物的最大价值

题目描述

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

 

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

 

提示:

  • 0 < grid.length <= 200
  • 0 < grid[0].length <= 200

解法

方法一:动态规划

我们定义 f [ i ] [ j ] f[i][j] f[i][j] 为从棋盘左上角走到 ( i − 1 , j − 1 ) (i-1, j-1) (i1,j1) 的礼物最大累计价值,那么 f [ i ] [ j ] f[i][j] f[i][j] 的值由 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 决定,即从上方格子和左方格子走过来的两个方案中选择一个价值较大的方案。因此我们可以写出动态规划转移方程:

f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] ) + g r i d [ i − 1 ] [ j − 1 ] f[i][j] = max(f[i-1][j], f[i][j-1]) + grid[i-1][j-1] f[i][j]=max(f[i1][j],f[i][j1])+grid[i1][j1]

答案为 f [ m ] [ n ] f[m][n] f[m][n]

时间复杂度 O ( m × n ) O(m \times n) O(m×n),空间复杂度 O ( m × n ) O(m \times n) O(m×n)。其中 m m m n n n 分别为棋盘的行数和列数。

Python3

在这里插入图片描述

class Solution:
    def maxValue(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i, row in enumerate(grid, 1): #enumerate 函数的第二个参数是指定i从哪个索引开始计数
            for j, v in enumerate(row, 1):
                f[i][j] = max(f[i - 1][j], f[i][j - 1]) + v
        return f[m][n]
Java
class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int[][] f = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return f[m][n];
    }
}
C++
class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> f(m + 1, vector<int>(n + 1, 0));
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                f[i][j] = max(f[i - 1][j], f[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return f[m][n];
    }
};
Go
func maxValue(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	f := make([][]int, m+1)
	for i := range f {
		f[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			f[i][j] = max(f[i-1][j], f[i][j-1]) + grid[i-1][j-1]
		}
	}
	return f[m][n]
}
TypeScript
function maxValue(grid: number[][]): number {
    const m = grid.length;
    const n = grid[0].length;
    const f = Array.from({ length: m + 1 }, _ => new Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]) + grid[i - 1][j - 1];
        }
    }
    return f[m][n];
}
Rust
impl Solution {
    pub fn max_value(mut grid: Vec<Vec<i32>>) -> i32 {
        let n = grid.len();
        let m = grid[0].len();
        for i in 1..n {
            grid[i][0] += grid[i - 1][0];
        }
        for i in 1..m {
            grid[0][i] += grid[0][i - 1];
        }
        for i in 1..n {
            for j in 1..m {
                grid[i][j] += grid[i][j - 1].max(grid[i - 1][j]);
            }
        }
        grid[n - 1][m - 1]
    }
}
JavaScript
/**
 * @param {number[][]} grid
 * @return {number}
 */
var maxValue = function (grid) {
    const m = grid.length;
    const n = grid[0].length;
    const f = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]) + grid[i - 1][j - 1];
        }
    }
    return f[m][n];
};
C#
public class Solution {
    public int MaxValue(int[][] grid) {
        int m = grid.Length, n = grid[0].Length;
        int[, ] f = new int[m + 1, n + 1];
        for (int i = 1; i < m + 1; i++) {
            for (int j = 1; j < n + 1; j++) {
                f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]) + grid[i - 1][j - 1];
            }
        }
        return f[m, n];
    }
}
Swift
class Solution {
    func maxValue(_ grid: [[Int]]) -> Int {
        let m = grid.count
        let n = grid[0].count
        var f = [[Int]](repeating: [Int](repeating: 0, count: n + 1), count: m + 1)

        for i in 1...m {
            for j in 1...n {
                f[i][j] = max(f[i - 1][j], f[i][j - 1]) + grid[i - 1][j - 1]
            }
        }

        return f[m][n]
    }
}

方法二:动态规划(空间优化)

我们注意到 f [ i ] [ j ] f[i][j] f[i][j] 只与 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 有关,因此我们可以仅用两行数组 f [ 2 ] [ n + 1 ] f[2][n+1] f[2][n+1] 来存储状态,也考虑到,两行之间对应位置元素的更新替代,最后一行数组可解决,从而将空间复杂度优化到 O ( n ) O(n) O(n)

Python3
class Solution:
    def maxValue(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        f = [0] * (n + 1) 
        for i, row in enumerate(grid, 1): #enumerate 函数的第二个参数是指定i从哪个索引开始计数
            for j, v in enumerate(row, 1):
                f[j] = max(f[j], f[j - 1]) + v
        return f[n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值