NLP论文笔记
文章平均质量分 70
此专栏为Chern的文献阅读笔记,可供大家参考
可姆可汗
USTC CS
展开
-
《Syntax-Enhanced Neural Machine Translation with Syntax-Aware Word Representations》论文笔记
文章目录试图解决的问题方法介绍BaselineEncoderDecoder试图解决的问题语法可以用于加强神经机器翻译的性能,比如2017年的工作集成了语法树到Seq2Seq神经机器翻译模型中。但是由于不同语法树的不均匀性,增加了批运算的困难,进而导致速度降低,即使专门设计了批算法,效果还是不尽如人意。Tree-Linearization方法试图解决这个问题,主要的思想是把语法树线性化成序列符号,然后利用结果序列作为NMT的输入。这篇文章也是来解决这个问题的,在使用语法信息的同时,保证模型的效率。作者提原创 2021-03-27 11:10:01 · 405 阅读 · 0 评论 -
Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data
文章目录解决问题工作Transformer models人工合成数据解决问题基于从拼写检查器提取出的困惑集,无监督地生成人工错误数据集,来解决数据缺少的问题。工作Transformer models使用Transformer模型,做一些小的修改(大量正则化防止过拟合、指数平滑、提高每个batch的size、整个模型的参数都被与悬链)人工合成数据使用拼写检查器来生成困惑集(困惑集就是经常相互混淆的单词集),生成困惑集时利用了编辑距离和语音距离的加权平均值。生成步骤为:对每个句子,采样均值0原创 2021-03-08 11:22:08 · 211 阅读 · 0 评论 -
《The BEA-2019 Shared Task on Grammatical Error Correction》论文笔记
文章目录数据集介绍数据集介绍BEA-2019是剑桥大学发布的新的GEC领域的benchmark,与CONLL-2014不同的是,它包含了很多等级的英语能力,因此更具有一般性。原创 2021-01-18 16:35:25 · 582 阅读 · 0 评论 -
《GECToR -- Grammatical Error Correction: Tag, Not Rewrite》论文笔记
文章目录解决的问题这篇论文的思想Token-level transformationsTagging model architectureIterative sequence tagging approach实验训练Encoders from pretrained transformersTweaking the inferenceSpeed comparisons结论解决的问题NMT-based GEC系统有如下几个问题妨碍了部署:缓慢的推理速度需要大量的训练数据可解释性在这篇论文中,通过原创 2021-01-17 20:54:10 · 1871 阅读 · 0 评论 -
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
文章目录BERTModel ArchitectureInput/Output RepresentationsPre-training BERTTask #1: Masked Language Model (MLM)Task # 2: Next Sentence Prediction (NSP)BERTModel Architecturea multi-layer bidirectional Transformer encoder.Input/Output Representationsinput原创 2020-11-06 10:53:59 · 159 阅读 · 0 评论