b站张颢老师随机过程笔记,本文主要是第一二节的内容。
建议先修课程:概率论,矩阵论或线性代数,高等数学。
由于张颢老师似乎是教电子的,里面的很多举例和信号相关,可以根据自己的实际来看,或者看看信号与系统。
笔记的pdf和markdown,需要的同学附邮箱地址私信我。
总结版传送门(推导较少)
随机过程(Stochastic Process)
一组随机变量,着眼于随机变量之间的关联,t只是一个index不一定是时间,t是两维就是随机场
-
Correlation(linear):相关
-
时域 Time Domain:相关函数 correlation function
-
频域 Frequency Domain:功率谱密度 Spectrum
-
典型的相关过程:高斯过程 Gaussian Process
-
-
Markov Property
-
离散时间
-
连续时间
-
典型的马尔可夫过程:泊松过程 Poisson Process
-
-
Martingale
- Optional Theorem
1.相关函数
线性相关
对于多个随机变量的关系研究,最开始是联合概率密度。对于随机变量 x,y。联合分布Joint Distribution
f x , y ( x , y ) = ∂ 2 ∂ x ∂ y F x , y ( x , y ) f_{x,y}(x,y)=\frac{\partial^{2}}{\partial x\partial y}F_{x,y}(x,y) fx,y(x,y)=∂x∂y∂2Fx,y(x,y)
F x , y ( x , y ) = P ( X ≤ x , Y ≤ y ) F_{x,y}(x,y)=P(X\leq x,Y\leq y) Fx,y(x,y)=P(X≤x,Y≤y)
从图像看相关性:看一个变量发生变化时,另外一个变量的分布或者概率是否发生变化
相关系数:对于线性相关,相关系数越大,相关性越高,对于二维变量,其图像表现得越细窄
我们试图建立两个随机变量的线性关系 Y = α X Y=\alpha X Y=αX,但是这样忽略了变量的变化是有范围的,不是单纯的线性关系,可以将其扩展为 E ( Y − α X ) 2 E(Y-\alpha X)^{2} E(Y−αX)2,即均方误差(mean square error)。对于 α \alpha α,由于希望找到 min α E ( Y − α X ) 2 \min\limits_{\alpha}E(Y-\alpha X)^{2} αminE(Y−αX)2,则 α o p t = E ( X Y ) E ( X 2 ) \alpha_{opt}=\frac{E(XY)}{E(X^{2})} αopt=E(X2)E(XY)。上面的部分更关键。
相关、不相关和独立
-
相关 E ( X Y ) E(XY) E(XY)
-
去中心化的相关 E ( X − E X ) E ( Y − E Y ) = E ( X Y ) − E ( X E Y ) − E ( Y E X ) − E X E Y = E ( X Y ) − E X E Y E(X-EX)E(Y-EY)=E(XY)-E(XEY)-E(YEX)-EXEY=E(XY)-EXEY E(X−EX)E(Y−EY)=E(XY)−E(XEY)−E(YEX)−EXEY=E(XY)−EXEY,减去了一个常数,两者不再区分。
-
不相关 Uncorrelated: E ( X Y ) = 0 E(XY)=0 E(XY)=0 或者 E ( X − E X ) E ( Y − E Y ) = 0 E(X-EX)E(Y-EY)=0 E(X−EX)E(Y−EY)=0,即 E ( X Y ) = E X E Y E(XY)=EXEY E(XY)=EXEY。是线性的关系不存在,可能存在其他关系
-
独立:更强
相关系数
一个重要的理解:几何上的理解 Geometric View,看作是一种内积 E ( X Y ) = < X , Y > E(XY)=<X,Y> E(XY)=<X,Y>
内积满足:对称性,非负性,双线性性(双变量各自满足线性性)
内积量化成角度: c o s < x , y > = < x , y > ( < x , x > < u , y > ) 1 2 cos<x,y>=\frac{<x,y>}{(<x,x><u,y>)^{\frac{1}{2}}} cos<x,y>=(<x,x><u,y>)21<x,y>
随机变量的相关对应到线性空间里两个矢量的夹角:Randow Variable to Vector
由此,将线性空间内的夹角扩展到随机变量的相关系数有 c o s = E ( X Y ) ( E X 2 E Y 2 ) 1 2 cos=\frac{E(XY)}{(EX^2EY^2)^{\frac{1}{2}}} cos=(EX2EY2)21E(XY)
这里的 E X 2 EX^2 EX2是 E ( X 2 ) E(X^{2}) E(X2)
根据Cauchy-Schwars不等式,保证 − 1 ≤ c o s ≤ 1 -1\leq cos\leq 1 −1≤cos≤1
Cauchy-Schwars的不同形式:
- ∣ ∑ k x x y k ∣ ≤ ( ∑ k x k 2 ) 1 2 ( ∑ k y k 2 ) 1 2 |\sum\limits_{k}x_{x}y_{k}|\leq(\sum\limits_{k}x^{2}_{k})^{\frac{1}{2}}(\sum\limits_{k}y^{2}_{k})^{\frac{1}{2}} ∣k∑xxyk∣≤(k∑xk2)21(k∑yk2)21
- ∫ f ( x ) g ( x ) d x ≤ ( ∫ f 2 ( x ) d x ∫ g 2 ( x ) d x ) 1 2 \int f(x)g(x)dx\leq (\int f^{2}(x)dx\int g^2(x)dx)^{\frac{1}{2}} ∫f(x)g(x)dx≤(∫f2(x)dx∫g2(x)dx)21
- 一般形式: ∣ < x , y > ∣ ≤ ∣ < x , x > < y , y > ∣ 1 2 |<x,y>|\leq|<x,x><y,y>|^{\frac{1}{2}} ∣<x,y>∣≤∣<x,x><y,y>∣21
都是内积。反映测不准原理。
有了几何上的理解,对于两个随机变量X,Y,在线性空间有夹角 θ \theta θ,计算Y在X上的投影,则有 ∣ ∣ Y ∣ ∣ c o s ( θ ) X ∣ ∣ X ∣ ∣ = ( ∣ ∣ Y ∣ ∣ ∣ ∣ X ∣ ∣ c o s ( θ ) ) X ||Y||cos(\theta)\frac{X}{||X||}=(\frac{||Y||}{||X||}cos(\theta))X ∣∣Y∣∣cos(θ)∣∣X∣∣X=(∣∣X∣∣∣∣Y∣∣cos(θ))X,由于 ∣ ∣ Y ∣ ∣ ∣ ∣ X ∣ ∣ E ( X Y ) ∣ ∣ X ∣ ∣ ∣ ∣ Y ∣ ∣ = E ( X Y ) E X 2 = α \frac{||Y||}{||X||}\frac{E(XY)}{||X||||Y||}=\frac{E(XY)}{EX^2}=\alpha ∣∣X∣∣∣∣Y∣∣∣∣X∣∣∣∣Y∣∣E(XY)=EX2E(XY)=α,所以Y在X上的投影为 α X \alpha X αX,和上面的 α \alpha α一致(上面没有写代数上的推导)
相关函数
相关函数 Correlation Funtion,定义在随机过程上
- Auto自相关:
R
X
(
t
,
s
)
=
E
(
X
(
t
)
X
(
s
)
)
R_{X}(t,s)=E(X(t)X(s))
RX(t,s)=E(X(t)X(s)),Binary二元的。性质
- 对称性: R X ( t , s ) = R X ( s , t ) R_{X}(t,s)=R_{X}(s,t) RX(t,s)=RX(s,t)
- 非负性: R X ( t , t ) = E ( X 2 ( t ) ) ≥ 0 R_X(t,t)=E(X^2(t))\geq 0 RX(t,t)=E(X2(t))≥0,对角线上是非负的
- 满足Cauchy-Schwars不等式: ∣ R X ( t , s ) ∣ ≤ ( R X ( t , t ) R X ( s , s ) ) 1 2 |R_{X}(t,s)|\leq (R_{X}(t,t)R_{X}(s,s))^{\frac{1}{2}} ∣RX(t,s)∣≤(RX(t,t)RX(s,s))21
特点来自于相关运算,即内积
由于这样的相关还是二元的,希望把它转化成一元的,因此,我们需要做一个假设,即平稳性。
证明过程:
g ( α ) = < α x + y , α x + y > = < x , x > α 2 + 2 < x , y > α + < y , y > g(\alpha)=<\alpha x+y,\alpha x+y>=<x,x>\alpha^2+2<x,y>\alpha+<y,y> g(α)=<αx+y,αx+y>=<x,x>α2+2<x,y>α+<y,y>
- Invariance to Stationary(平稳性):平稳性是一种不变特征,指随机过程的某一类统计特性随着时间变化而保持不变的特性
- 宽平稳
- 均值不变,是常数: E [ X ( t ) ] = m ( t ) = m E[X(t)]=m(t)=m E[X(t)]=m(t)=m
- 相关函数满足 R X ( t , s ) = R X ( t + D , s + D ) , ∀ D ∈ R R_X(t,s)=R_X(t+D,s+D),\forall D \in \mathbb{R} RX(t,s)=RX(t+D,s+D),∀D∈R,这时相关函数只与两个时刻的差值有关,即 R X ( t , s ) = R X ( t − s ) = R X ( τ ) R_X(t,s)=R_X(t-s)=R_X(\tau) RX(t,s)=RX(t−s)=RX(τ),而和时刻的具体位置无关。相关函数变成了一元的了。
搞清楚什么是确定的,什么是随机的
因此更加关注上面的第二条。- 此时相关函数的性质:
-
对称性: R X ( τ ) = R X ( − τ ) R_X(\tau)=R_X(-\tau) RX(τ)=RX(−τ)。即宽平稳情况下相关函数是偶函数
-
柯西不等式: ∣ R X ( τ ) ∣ ≤ R X ( 0 ) |R_X(\tau)|\leq R_X(0) ∣RX(τ)∣≤RX(0)
-
Positive Definite正定性:
矩阵正定: A ∈ R n × n , α ∈ R n , α T A α ≥ 0 A\in \mathbb{R}^{n\times n},\alpha \in \mathbb{R}^n,\alpha^TA\alpha \geq 0 A∈Rn×n,α∈Rn,αTAα≥0
函数正定:函数 f ( x ) f(x) f(x)正定,即任取n个变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,构成矩阵的 A = ( a i j ) n × n , a i j = f ( x i − x j ) A=(a_{ij})_{n\times n},a_{ij}=f(x_i-x_j) A=(aij)n×n,aij=f(xi−xj)正定
- 若正定,则 R X ( 0 ) ≥ 0 R_X(0)\geq0 RX(0)≥0。取1个变量,则 A = ∣ R X ( x 1 − x 1 ) ∣ A=|R_X(x_1-x_1)| A=∣RX(x1−x1)∣,一个元素, R X ( x 1 − x 1 ) = R X ( 0 ) ≥ 0 R_X(x_1-x_1)=R_X(0)\geq0 RX(x1−x1)=RX(0)≥0
- 若正定,则一定满足柯西不等式
∣
R
X
(
τ
)
∣
≤
R
X
(
0
)
|R_X(\tau)|\leq R_X(0)
∣RX(τ)∣≤RX(0)。取两个变量
x
1
=
0
,
x
2
=
τ
x_1=0,x_2=\tau
x1=0,x2=τ,则有矩阵
A = ( R X ( x 1 − x 1 ) R X ( x 1 − x 2 ) R X ( x 2 − x 1 ) R X ( x 2 − x 2 ) ) = ( R X ( 0 ) R X ( − τ ) R X ( τ ) R X ( 0 ) ) ≥ 0 A= \begin{pmatrix} R_X(x_1-x_1) & R_X(x_1-x_2)\\ R_X(x_2-x_1) & R_X(x_2-x_2) \end{pmatrix} = \begin{pmatrix} R_X(0) & R_X(-\tau)\\ R_X(\tau) & R_X(0) \end{pmatrix} \geq0 A=(RX(x1−x1)RX(x2−x1)RX(x1−x2)RX(x2−x2))=(RX(0)RX(τ)RX(−τ)RX(0))≥0
因为,正定矩阵对称,所以 R X ( τ ) = R X ( − τ ) R_X(\tau)=R_X(-\tau) RX(τ)=RX(−τ)。柯西不等式也因行列式为正可得。
-
验证正定:任取n个时刻,有 τ 1 , τ 2 , . . . , τ n \tau_1,\tau_2,...,\tau_n τ1,τ2,...,τn,构成矩阵 A = ( f ( x i − x j ) ) i j ≥ 0 A=(f(x_i-x_j))_{ij}\geq 0 A=(f(xi−xj))ij≥0。任取 α ∈ R n , α = ( α 1 , . . . , α n ) T \alpha \in \mathbb{R}^n,\alpha = (\alpha_1,...,\alpha_n)^T α∈Rn,α=(α1,...,αn)T。计算
α T A α = ∑ i = 1 n ∑ j = 1 n R X ( τ i − τ j ) α i α j = ∑ i = 1 n ∑ j = 1 n E [ X ( τ i ) X ( τ j ) ] α i α j = E [ ∑ i = 1 n ∑ j = 1 n X ( τ i ) X ( τ j ) α i α j ] ( 因为此处 α 没有随机性 ) = E [ ∑ i = 1 n X ( τ i ) α i ] 2 ≥ 0 ( 最后一步化简可能比较难理解,注意这里不是 E [ ∑ i = 1 n ( X ( τ i ) α i ) 2 ] \begin{aligned} \alpha ^TA\alpha &=\sum_{i=1}^n\sum_{j=1}^nR_X(\tau_i-\tau_j)\alpha_i\alpha_j\\ &=\sum_{i=1}^n\sum_{j=1}^nE[X(\tau_i)X(\tau_j)]\alpha_i\alpha_j\\ &=E[\sum_{i=1}^n\sum_{j=1}^nX(\tau_i)X(\tau_j)\alpha_i\alpha_j](因为此处\alpha没有随机性)\\ &=E[\sum_{i=1}^nX(\tau_i)\alpha_i]^2\geq0(最后一步化简可能比较难理解,注意这里不是E[\sum_{i=1}^n(X(\tau_i)\alpha_i)^2] \end{aligned} αTAα=i=1∑nj=1∑nRX(τi−τj)αiαj=i=1∑nj=1∑nE[X(τi)X(τj)]αiαj=E[i=1∑nj=1∑nX(τi)X(τj)αiαj](因为此处α没有随机性)=E[i=1∑nX(τi)αi]2≥0(最后一步化简可能比较难理解,注意这里不是E[i=1∑n(X(τi)αi)2]相关矩阵Correlation Matrix。下面是正定证明的另一种写法。
X = ( X ( τ 1 ) , . . . , X ( τ n ) ) T , ( R X ( τ i − τ j ) ) i j = E ( X X T ) = R X=(X(\tau_1),...,X(\tau_n))^T,(R_X(\tau_i-\tau_j))_{ij}=E(XX^T)=R X=(X(τ1),...,X(τn))T,(RX(τi−τj))ij=E(XXT)=R
α T R α = α T E ( X X T ) α = E ( α T X X T α ) = E ( α T X ) 2 \alpha^TR\alpha=\alpha^TE(XX^T)\alpha=E(\alpha^TXX^T\alpha)=E(\alpha^TX)^2 αTRα=αTE(XXT)α=E(αTXXTα)=E(αTX)2
-
相关函数是正定函数,这是其特征性质Characteristic Property,即充分必要。正定函数一定是相关函数,任何一个正定函数一定能找到某个随机过程,使得该正定函数是其相关函数。
- 如果有 R ( 0 ) = R ( τ ) , τ ≠ 0 R(0)=R(\tau),\tau\neq0 R(0)=R(τ),τ=0,则一定能推断出 R ( τ ) = R ( τ + T ) R(\tau)=R(\tau+T) R(τ)=R(τ+T),即相关函数一定是周期的。
验证:
均方周期性mean square Periodic
E ∣ X ( τ + T ) − X ( τ ) ∣ 2 = E [ X 2 ( τ + T ) ] + E [ X 2 ( τ ) ] − 2 E [ X ( τ + T ) X ( τ ) ] = 2 R X ( 0 ) − 2 R X ( T ) = 0 ∣ R ( τ + T ) − R ( τ ) ∣ = ∣ E [ X ( τ + T ) X ( 0 ) ] − E [ X ( τ ) X ( 0 ) ] ∣ = ∣ E [ X ( 0 ) ( X ( τ + T ) − X ( τ ) ) ] ∣ ≤ ( E [ X 2 ( 0 ) ] E ∣ X ( τ + T ) − X ( τ ) ∣ 2 ) 1 2 = 0 \begin{aligned} E|X(\tau+T)-X(\tau)|^2&=E[X^2(\tau+T)]+E[X^2(\tau)]-2E[X(\tau+T)X(\tau)]\\ &=2R_X(0)-2R_X(T)=0\\ |R(\tau+T)-R(\tau)|&=|E[X(\tau+T)X(0)]-E[X(\tau)X(0)]|\\ &=|E[X(0)(X(\tau+T)-X(\tau))]|\\ &\leq (E[X^2(0)]E|X(\tau+T)-X(\tau)|^2)^\frac{1}{2}=0 \end{aligned} E∣X(τ+T)−X(τ)∣2∣R(τ+T)−R(τ)∣=E[X2(τ+T)]+E[X2(τ)]−2E[X(τ+T)X(τ)]=2RX(0)−2RX(T)=0=∣E[X(τ+T)X(0)]−E[X(τ)X(0)]∣=∣E[X(0)(X(τ+T)−X(τ))]∣≤(E[X2(0)]E∣X(τ+T)−X(τ)∣2)21=0- 是否存在Rectangle Window(矩形窗)一样的相关函数?不存在。
- 相关函数的一个特性:相关函数在0点连续,则在任意点连续(局部—>总体,来源于平稳的特点)
- 不是正定的,因为傅里叶函数不是正的,不是相关函数
- 三角波是否是相关函数?是。
时域卷积为频域乘积。则傅里叶变换为正,故正定,是相关函数
证明1:
两个随机变量之间的距离,是均方距离mean square distance ,进而推广到随机极限(满足范数的定义:非负性、对称性、三角不等式(通过柯西不等式可推导))
均方连续性mean square continuous
E ∣ X ( τ + Δ ) − X ( τ ) ∣ 2 = 2 R X ( 0 ) − 2 R X ( Δ ) 因为在 0 点连续,因此 lim Δ → 0 E ∣ X ( τ + Δ ) − X ( τ ) ∣ 2 = 0 ∣ R ( τ + Δ ) − R ( τ ) ∣ ≤ ( E [ X 2 ( 0 ) ] E ∣ X ( τ + Δ ) − X ( τ ) ∣ 2 ) 1 2 = 0 因此 lim Δ → 0 ∣ R ( τ + Δ ) − R ( τ ) ∣ = 0 \begin{aligned} &E|X(\tau+\Delta)-X(\tau)|^2 =2R_X(0)-2R_X(\Delta)\\ &因为在0点连续,因此 \lim_{\Delta\rightarrow0}E|X(\tau+\Delta)-X(\tau)|^2=0\\ &|R(\tau+\Delta)-R(\tau)|\leq(E[X^2(0)]E|X(\tau+\Delta)-X(\tau)|^2)^\frac{1}{2}=0\\ &因此\lim_{\Delta\rightarrow0}|R(\tau+\Delta)-R(\tau)|=0 \end{aligned} E∣X(τ+Δ)−X(τ)∣2=2RX(0)−2RX(Δ)因为在0点连续,因此Δ→0limE∣X(τ+Δ)−X(τ)∣2=0∣R(τ+Δ)−R(τ)∣≤(E[X2(0)]E∣X(τ+Δ)−X(τ)∣2)21=0因此Δ→0lim∣R(τ+Δ)−R(τ)∣=0
证明2:Bochner指出:一个函数是正定的,当且仅当该函数的傅里叶变换是正的。(这里提供了频域研究的思路,而宽平稳是可以做频域分析的)
f ( x ) i s P . d ⇔ ∫ − ∞ + ∞ f ( x ) e − j ω x d x ≥ 0 f(x)\ is\ P.d\Leftrightarrow\int_{-\infty}^{+\infty}f(x)e^{-j\omega x}dx\geq0 f(x) is P.d⇔∫−∞+∞f(x)e−jωxdx≥0
矩形窗的傅里叶变换是Sa函数,不满足条件。下面验证Bochner提出的那句话:
已知 F ( ω ) = ∫ − ∞ + ∞ f ( x ) e − j ω x d x ≥ 0 F(\omega)=\int_{-\infty}^{+\infty}f(x)e^{-j\omega x}dx\geq0 F(ω)=∫−∞+∞f(x)e−jωxdx≥0。证明: f ( x ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω x d ω f(x)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{j\omega x}d\omega f(x)=2π1∫−∞+∞F(ω)ejωxdω正定。
先看 g ( x ) = e j ω x g(x)=e^{j\omega x} g(x)=ejωx:即 ∀ x 1 , x 2 , . . . , x n . ( e j ω ( x i − x j ) ) i j = B , ∀ α ∈ C n ⇒ α H B α ≥ 0 \forall x_1,x_2,...,x_n.(e^{j\omega(x_i-x_j)})_{ij}=B,\forall \alpha\in C^n\Rightarrow\alpha^HB\alpha\geq0 ∀x1,x2,...,xn.(ejω(xi−xj))ij=B,∀α∈Cn⇒αHBα≥0
α H B α = ∑ i = 1 n ∑ j = 1 n e j ω ( x i − x j ) α i ‾ α j = ∣ ∑ i = 1 n e j ω ( x i ) α i ‾ ∣ 2 ≥ 0 \begin{aligned} \alpha^HB\alpha&=\sum_{i=1}^n\sum_{j=1}^ne^{j\omega(x_i-x_j)}\overline{\alpha_i}\alpha_j\\ &=|\sum_{i=1}^ne^{j\omega(x_i)}\overline{\alpha_i}|^2\geq0 \end{aligned} αHBα=i=1∑nj=1∑nejω(xi−xj)αiαj=∣i=1∑nejω(xi)αi∣2≥0
h ( ω , x ) i s P . d ⇒ ∑ k = 1 n a k h ( ω k , x ) i s P . d , a k ≥ 0 ⇒ ∫ − ∞ + ∞ a ( ω ) h ( ω , x ) d ω h(\omega,x)\ is \ P.d\Rightarrow\sum_{k=1}^na_kh(\omega_k,x)\ is \ P.d,a_k\geq0\Rightarrow\int_{-\infty}^{+\infty}a(\omega)h(\omega,x)d\omega h(ω,x) is P.d⇒∑k=1nakh(ωk,x) is P.d,ak≥0⇒∫−∞+∞a(ω)h(ω,x)dω随机变量:样本空间映射到实数轴的确定性函数。
概率:样本空间包含了所有的可能性,然后P(A)=p,这是一个确定性函数,本身表示的是样本空间某个子集的出现可能性的大小。是先验的。
概率:从模型(先验)到决策
统计:从数据得到模型
- 宽平稳
例1:Modulated Signal。 X ( t ) = A ( t ) c o s ( 2 π f 0 t + θ ) , A ( t ) : 随机 , θ ∼ v ( 0 , a π ) , A ( t ) 与 θ X(t)=A(t)cos(2\pi f_0t+\theta),A(t):随机,\theta \sim v(0,a\pi),A(t)与\theta X(t)=A(t)cos(2πf0t+θ),A(t):随机,θ∼v(0,aπ),A(t)与θ 独立。证明宽平稳:
先看一阶矩:
E
[
X
(
t
)
]
=
E
[
A
(
t
)
]
E
[
c
o
s
(
2
π
f
0
t
+
θ
)
]
=
E
[
A
(
t
)
]
∫
0
2
π
c
o
s
(
2
π
f
0
t
+
θ
)
d
θ
=
0
\begin{aligned} E[X(t)]&=E[A(t)]E[cos(2\pi f_0t+\theta)]\\ &=E[A(t)]\int^{2\pi}_{0}cos(2\pi f_0t+\theta)d\theta \\ &=0 \end{aligned}
E[X(t)]=E[A(t)]E[cos(2πf0t+θ)]=E[A(t)]∫02πcos(2πf0t+θ)dθ=0
再看相关函数:
R
X
(
t
,
s
)
=
E
[
X
(
t
)
X
(
s
)
]
=
E
[
A
(
t
)
A
(
s
)
]
E
[
c
o
s
(
2
π
f
0
t
+
θ
)
c
o
s
(
2
π
f
0
s
+
θ
)
]
=
E
[
A
(
t
)
A
(
s
)
]
1
2
(
E
[
c
o
s
(
2
π
f
0
(
t
−
s
)
)
]
+
E
[
c
o
s
(
2
π
f
0
(
t
+
s
)
+
2
θ
)
]
)
=
1
2
E
[
A
(
t
)
A
(
s
)
]
E
[
c
o
s
(
2
π
f
0
(
t
−
s
)
)
]
\begin{aligned} R_X(t,s)&=E[X(t)X(s)]\\ &=E[A(t)A(s)]E[cos(2\pi f_0t+\theta)cos(2\pi f_0s+\theta)]\\ &=E[A(t)A(s)]\frac{1}{2}(E[cos(2\pi f_0(t-s))]+E[cos(2\pi f_0(t+s)+2\theta)])\\ &=\frac{1}{2}E[A(t)A(s)]E[cos(2\pi f_0(t-s))] \end{aligned}
RX(t,s)=E[X(t)X(s)]=E[A(t)A(s)]E[cos(2πf0t+θ)cos(2πf0s+θ)]=E[A(t)A(s)]21(E[cos(2πf0(t−s))]+E[cos(2πf0(t+s)+2θ)])=21E[A(t)A(s)]E[cos(2πf0(t−s))]
可见,如果振幅调制本身是宽平稳的,则整体的信号是宽平稳的。
例2:Random Telegraph Signal。随机取1或-1。已知在[s,t]时间内,切换k次的概率为
P
=
λ
(
t
−
s
)
k
k
!
e
−
λ
(
t
−
s
)
P=\frac{\lambda(t-s)^k}{k!}e^{-\lambda(t-s)}
P=k!λ(t−s)ke−λ(t−s)。泊松分布Poisson Distribution。证明宽平稳。
计算二阶矩(相关函数):
E
[
X
(
t
)
X
(
s
)
]
=
R
X
(
t
,
s
)
=
1
⋅
P
1
+
(
−
1
)
⋅
P
−
1
=
∑
k
∈
e
v
e
n
λ
(
t
−
s
)
k
k
!
−
∑
k
∈
o
d
d
λ
(
t
−
s
)
k
k
!
=
e
−
2
λ
(
t
−
s
)
\begin{aligned} E[X(t)X(s)]&=R_X(t,s)\\ &=1\cdot P_1+(-1)\cdot P_{-1}\\ &=\sum_{k \in even}\frac{\lambda(t-s)^k}{k!}-\sum_{k \in odd}\frac{\lambda(t-s)^k}{k!}\\ &=e^{-2\lambda(t-s)} \end{aligned}
E[X(t)X(s)]=RX(t,s)=1⋅P1+(−1)⋅P−1=k∈even∑k!λ(t−s)k−k∈odd∑k!λ(t−s)k=e−2λ(t−s)
其中,结果只有1和-1两种可能,故需处理两种结果的概率即可。而结果是1说明信号翻转了偶数次,结果是-1说明翻转了奇数次。因为
∑
λ
(
t
−
s
)
k
k
!
=
e
λ
(
t
−
s
)
∑
[
−
λ
(
t
−
s
)
]
k
k
!
=
e
−
λ
(
t
−
s
)
\begin{aligned} \sum \frac{\lambda(t-s)^k}{k!}&=e^{\lambda(t-s)}\\ \sum \frac{[-\lambda(t-s)]^k}{k!}&=e^{-\lambda(t-s)} \end{aligned}
∑k!λ(t−s)k∑k![−λ(t−s)]k=eλ(t−s)=e−λ(t−s)
则
∑
k
∈
e
v
e
n
λ
(
t
−
s
)
k
k
!
=
1
2
[
e
λ
(
t
−
s
)
+
e
−
λ
(
t
−
s
)
]
=
1
2
[
1
+
e
−
2
λ
(
t
−
s
)
]
∑
k
∈
o
d
d
λ
(
t
−
s
)
k
k
!
=
1
2
[
e
λ
(
t
−
s
)
−
e
−
λ
(
t
−
s
)
]
=
1
2
[
1
−
e
−
2
λ
(
t
−
s
)
]
\begin{aligned} \sum_{k \in even}\frac{\lambda(t-s)^k}{k!} &=\frac{1}{2}[e^{\lambda(t-s)}+e^{-\lambda(t-s)}]\\ &=\frac{1}{2}[1+e^{-2\lambda(t-s)}]\\ \sum_{k \in odd}\frac{\lambda(t-s)^k}{k!} &=\frac{1}{2}[e^{\lambda(t-s)}-e^{-\lambda(t-s)}]\\ &=\frac{1}{2}[1-e^{-2\lambda(t-s)}] \end{aligned}
k∈even∑k!λ(t−s)kk∈odd∑k!λ(t−s)k=21[eλ(t−s)+e−λ(t−s)]=21[1+e−2λ(t−s)]=21[eλ(t−s)−e−λ(t−s)]=21[1−e−2λ(t−s)]
2.从相关到随机过程
相关
相关是对两个随机变量而言的 X , Y X,Y X,Y,计算相关 E ( X Y ) E(XY) E(XY)。
- 从代数上讲,内积
- 从几何上讲,夹角。如此有了正交、投影等概念
- 从随机上讲,期望
随机过程
随机过程X(t),t:Index Set只是一个指标集(Time就是随机过程,Space就是随机场)。用相关函数研究随机过程,
R
X
(
t
,
s
)
=
E
(
X
(
t
)
X
(
s
)
)
R_X(t,s)=E(X(t)X(s))
RX(t,s)=E(X(t)X(s)),是一个确定性的二元函数。如果随机过程满足平稳性,如宽平稳,则相关函数只依赖于时间差,即
R
X
(
t
,
s
)
=
R
X
(
t
−
s
)
R_X(t,s)=R_X(t-s)
RX(t,s)=RX(t−s)
X
(
t
)
=
X
(
ω
,
t
)
,
Ω
×
R
→
R
X(t)=X(\omega,t),\Omega\times\mathbb{R}\rightarrow\mathbb{R}
X(t)=X(ω,t),Ω×R→R
- 映射关系:给定t,得到一个随机变量X(关心随机变量之间的关系)。需要知道的是,随机变量本身也是一个函数
- X ( t , w ) X(t,w) X(t,w),实际上是一个二元函数,不止依赖于t,还依赖于样本空间里的样本点w,w体现了随机性
- 因此,给定w,得到一个关于时间的函数,不再有不确定性,该函数称为样本轨道Sample Path
样本轨道在不同时刻的取值不是完全独立的,受到一种关系的约束,随机过程在不同时刻得到的不同的随机变量之间有着相互的约束
希望研究,不确定性下确定的东西,随着时间变化下的趋势
- 映射关系:给定t,得到一个随机变量X(关心随机变量之间的关系)。需要知道的是,随机变量本身也是一个函数
- X ( t , w ) X(t,w) X(t,w),实际上是一个二元函数,不止依赖于t,还依赖于样本空间里的样本点w,w体现了随机性
- 因此,给定w,得到一个关于时间的函数,不再有不确定性,该函数称为样本轨道Sample Path
样本轨道在不同时刻的取值不是完全独立的,受到一种关系的约束,随机过程在不同时刻得到的不同的随机变量之间有着相互的约束
希望研究,不确定性下确定的东西,随着时间变化下的趋势