整数因子分解问题(递归分治法、动态规划)

Description

大于1的正整数n可以分解为:n=x1 * x2 * … * xm。 例如,当n=12 时,共有8 种不同的分解式: 12=12; 12=6 * 2; 12=4 * 3; 12=3 * 4; 12=3 * 2 * 2; 12=2 * 6; 12=2 * 3 * 2; 12=2 * 2 * 3。 对于给定的正整数n,计算n共有多少种不同的分解式。

Input

输入数据只有一行,有1个正整数n (1≤n≤2000000000)。

Output

将计算出的不同的分解式数输出。

Sample Input

12

Sample Output

8

递归分治法:

耗时有些大,但是通过了。

f ( n ) f(n) f(n) 为n的不同分解式个数。

f ( n ) = ∑ n % i = = 0 f ( n / i ) , 2 < = i < = n f(n) = \sum_{n\%i==0} f(n/i),\\ 2 <= i <= n f(n)=n%i==0f(n/i),2<=i<=n

比如20

f ( 1 ) = 1 f(1) = 1 f(1)=1

f ( 20 ) = f ( 2 ) + f ( 10 ) + f ( 4 ) + f ( 5 ) + f ( 1 ) f(20) = f(2) + f(10) + f(4) + f(5) + f(1) f(20)=f(2)+f(10)+f(4)+f(5)+f(1)

f ( 2 ) = f ( 1 ) = 1 f(2) = f(1) = 1 f(2)=f(1)=1

f ( 10 ) = f ( 2 ) + f ( 5 ) + f ( 1 ) = 1 + 1 + 1 = 3 f(10) = f(2) + f(5) + f(1) = 1 + 1 + 1 = 3 f(10)=f(2)+f(5)+f(1)=1+1+1=3

f ( 4 ) = f ( 2 ) + f ( 1 ) = 1 + 1 = 2 f(4) = f(2) + f(1) = 1 + 1 = 2 f(4)=f(2)+f(1)=1+1=2

f ( 5 ) = f ( 1 ) = 1 f(5) = f(1) = 1 f(5)=f(1)=1

所以: f ( 20 ) = 1 + 3 + 2 + 1 + 1 = 8 f(20) = 1 + 3 + 2 + 1 + 1 = 8 f(20)=1+3+2+1+1=8

发现 f ( n ) 里 会 有 f ( n / n ) f(n)里会有f(n/n) f(n)f(n/n),所以 f ( n ) f(n) f(n)初始值可以初始化为1

for循环找因子也不用一直到n,到sqrt(n)就行,也就是i * i < n就行

最后判断一下i * i == n,因为左右因子都一样怎么交换都一样,所以只用加上 f ( i ) f(i) f(i)即可

比如 f ( 100 ) = f ( 2 ) + f ( 50 ) + f ( 4 ) + f ( 25 ) + f ( 5 ) + f ( 20 ) + f ( 10 ) + f ( 1 ) f(100) = f(2) + f(50) + f(4) + f(25) + f(5) + f(20) + f(10) + f(1) f(100)=f(2)+f(50)+f(4)+f(25)+f(5)+f(20)+f(10)+f(1)

i * i < n, f ( n ) = ∑ n % i = = 0 ( f ( n / i ) + f ( i ) ) f(n) = \sum_{n \% i == 0} (f(n / i) + f(i)) f(n)=n%i==0(f(n/i)+f(i))

i * i == n, f ( n ) = f ( n ) + f ( i ) f(n) = f(n) + f(i) f(n)=f(n)+f(i)

比如 f ( 20 ) = f ( 2 ) + f ( 10 ) + f ( 4 ) + f ( 5 ) + f ( 1 ) f(20) = f(2) + f(10) + f(4) + f(5) + f(1) f(20)=f(2)+f(10)+f(4)+f(5)+f(1)

找出 f ( 2 ) f(2) f(2)就可以加上 f ( 20 / 2 ) = f ( 10 ) f(20 / 2) = f(10) f(20/2)=f(10) f ( 4 ) f(4) f(4)可以得 f ( 20 / 4 ) = f ( 5 ) f(20/4) = f(5) f(20/4)=f(5)

// 递归法
#include <stdio.h>

int solve(int n)
{
	int ans = 1, i;					// ans = 1初始表示n = n的情况
	for (i = 2; i * i < n; i++)		// 因子乘因子小于n
		if (n % i == 0)				// i 是 n的因子, n / i也是n的因子
			ans += solve(i) + solve(n / i);
	if (i * i == n)					// i是n的因子, 并且i * i == n时只有这一种情况, 左右交换也是一种
		ans += solve(i);
	return ans;
}

int main()
{
	int n;
	scanf("%d", &n);
	printf("%d\n", solve(n));
	return 0;
}

动态规划法:

算术基本定理:任何一个大于1的自然数N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积

N = p 1 x 1 ∗ p 2 x 2 ∗ . . . ∗ p n x n p 1 , p 2 ,   . . .   , p n 都 为 质 数 x 1 , x 2 ,   . . .   , x n 都 是 大 于 等 于 0 的 整 数 N = p_1^{x_1} * p_2^{x_2} * ...*p_n^{x_n} \\ p_1, p_2,\ ...\ ,p_n都为质数 \\ x_1, x_2,\ ...\ ,x_n都是大于等于0的整数 N=p1x1p2x2...pnxnp1,p2, ... ,pnx1,x2, ... ,xn0

可以得出:

N正因子个数为 ( x 1 + 1 ) ∗ ( x 2 + 1 ) ∗ . . . ∗ ( x n + 1 ) (x_1 + 1) * (x_2 + 1) * ... * (x_n + 1) (x1+1)(x2+1)...(xn+1)

2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 = 6469693230

6469693230的正因子个数为:210 = 1024 , 所以存因子的数组开2000就差不多了

dp[i]存的是factor[i]的分解式个数

一个数可以分解为因子乘积,因子的因子也是因子

所以一个数的分解式个数等于因子的分解式个数之和

dp[]初始化0

递推公式:
d p [ i ] = { 1   i = 0 ∑ j = 0 , f a c t o r [ i ] % f a c t o r [ j ] = = 0 i − 1 d p [ j ]   i > = 1 dp[i] = \begin{cases} 1 &\ i=0 \\ \sum_{j=0,factor[i] \% factor[j] == 0}^{i-1}dp[j] &\ i>=1 \end{cases} dp[i]={1j=0,factor[i]%factor[j]==0i1dp[j] i=0 i>=1

// 动态规划
#include <iostream>
#include <algorithm>

using namespace std;

int solve(int n)
{
	// factor数组存因子, dp数组存分解式个数, cnt记录因子个数
	int factor[2000], dp[2000], cnt = 0, i;
	// 找出n的因子
	for (i = 1; i * i < n; i++)			// 循环次数缩减到sqrt(n)
	{
		if (n % i == 0)
		{
			factor[cnt++] = i;			// i为因子
			factor[cnt++] = n / i;		// n/i也为因子
		}
	}
	if (i * i == n)
		factor[cnt++] = i;				// 如果i*i==n, i也为因子
	
	sort(factor, factor + cnt);			// 把因子从小到大排序
	fill(dp, dp + cnt, 0);				// 把dp数组初始化为0, 初始因子分解式个数都为0

	dp[0] = 1;							// 第一个因子(1)自己的分解式只有一个
	for (i = 1; i < cnt; i++)			// 从第二个因子开始, 循环找第i个因子的因子是否为前i-1个因子
		for (int j = 0; j < i; j++)
			if (factor[i] % factor[j] == 0)	// 如果第i个因子的因子是前i-1个因子中的, 第i个的分解式个数加上满足条件的
				dp[i] += dp[j];
	
	return dp[cnt - 1];					// dp[0]从0开始, cnt要减1
}

int main()
{
	ios::sync_with_stdio(false);		// 防止TLE
	cin.tie(NULL);
	cout.tie(NULL);

	int n;
	cin >> n;
	cout << solve(n);
	return 0;
}
  • 25
    点赞
  • 153
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值