【算法训练记录——Day12】


目标:
● 239. 滑动窗口最大值
● 347.前 K 个高频元素
● 总结

滑动窗口最大值

在这里插入图片描述
思路:今天上强度了,上来就是困难。我的理解是维护一个大小为k的窗口,i从0-k给窗口赋值, k - len-1时,每移动一位,去掉当前元素

    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
    	int len = nums.size();
    	set<int> window;
    	vector<int> res;
    	for(int i = 0; i < k; i++) {
    		window.insert(nums[i]);	
    	}
    	for(int i = k; i < len; i++) {
    			window.earse();
    	}
    }

写到这里突然感觉不对,set会直接去重呀。。

	vector<int> maxSlidingWindow(vector<int>& nums, int k) {
    	int len = nums.size();
    	multiset<int> window;
    	vector<int> res;
    	for(int i = 0; i < k; i++) {
    		window.insert(nums[i]);
    	}
    	res.push_back(*window.rbegin());
    	for(int i = k; i < len; i++) {
   			window.earse(nums[i-k]);
   			window.insert(nums[i]);
   			res.push_back(*window.rbegin());
    	}
    	return res;
    }

解法二:单调队列
维护一个队列,有pop和push功能,并且还能返回当前队列的最大值即可。
如何做到?
每次push都要保证front是最大值。除此之外,需要保证最大值的生命周期是k次循环
单调队列,当前 val > back时(back始终是队列最小值),将队列中小于back的元素出队,然后push(val),这可以保证front始终是最大值。当val<back时,直接将val加入队列。
在push的过程中front有两种情况,
一种是一直是最大值,直到k次循环后被挤出队列,所以需要保证后面push的val都比front小,否则最大值front不成立。此时val < front,若后面加入两个val1和val2,val1 < val2 < front,若front出队列,此使需要保证front依然是最大值,因此val 不但要小于front还要小于 back,即始终是单调递减队列。
另一种是,front不是最大值,此使为了让front是最大值,因为val 始终比 back 大,队列清空,只剩val
每次pop都要考虑最大值被pop的场景,如果val != front, 对结果没有影响,为什么没有影响呢,我i理解主要是因为单调队列里的元素出队顺序是固定的,正常情况永远是front先出队,因为front先入队。如果val!=front,那么他肯定也不等于front中任一个数

class MyQueue {
	deque<int> dq;
public:
	void push(int val) {
			while(!dq.empty() && val > dq.back()) {
				dq.pop_back();	
			}
			dq.push_back(val);
			return;
	}
	void pop(int val) {
		if (!dq.empty() && val == dq.front()) {
			dq.pop_front();
		}
		return;
	}
	int front() {
		return dq.front();
	}
};

vector<int> maxSlidingWindow(vector<int>& nums, int k) {
    int len = nums.size();
    vector<int> ans;
    MyQueue win;
    for(int i = 0; i < k; i++) {
        win.push(nums[i]);
    }
    ans.push_back(win.front());
    for(int i = k; i < len; i++) {
        win.pop(nums[i-k]);
        win.push(nums[i]);
        ans.push_back(win.front());
    }
    return ans;
}

347.前K个高频元素

在这里插入图片描述
思路:前K个,堆排序,大顶堆。对频率进行堆排序。
c++中堆的实现用的优先队列 priority_queue

	class mycomparison {
		bool operator() (const pair<int, int>& lhs, const pair<int, int>& rhs )	{
			return lhs.second > rhs.second;	
		}
	};
	vector<int> topKFrequent(vector<int>& nums, int k) {
		unordered_map<int, int>	dp;
		for(int i : nums) {
			dp[i]++;	
		}
		priority_queue<pair<int,int>, vector<pair<int, int>>, mycomparison> pri_que;
		for(auto i : dp) {
			pri_que.push(i);
			if(pri_que.size() > k)
				pri_que.pop();
		}
		vector<int> res(k);
		for(int i = 0; i < k; i++) {
			res[i] = pri_que.top().first;
			pri_que.pop();
		}
	}

堆的用法还不是很熟悉。再练练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值