Day12——栈和队列iii
目标:
● 239. 滑动窗口最大值
● 347.前 K 个高频元素
● 总结
滑动窗口最大值
思路:今天上强度了,上来就是困难。我的理解是维护一个大小为k的窗口,i从0-k给窗口赋值, k - len-1时,每移动一位,去掉当前元素
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int len = nums.size();
set<int> window;
vector<int> res;
for(int i = 0; i < k; i++) {
window.insert(nums[i]);
}
for(int i = k; i < len; i++) {
window.earse();
}
}
写到这里突然感觉不对,set会直接去重呀。。
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int len = nums.size();
multiset<int> window;
vector<int> res;
for(int i = 0; i < k; i++) {
window.insert(nums[i]);
}
res.push_back(*window.rbegin());
for(int i = k; i < len; i++) {
window.earse(nums[i-k]);
window.insert(nums[i]);
res.push_back(*window.rbegin());
}
return res;
}
解法二:单调队列
维护一个队列,有pop和push功能,并且还能返回当前队列的最大值即可。
如何做到?
每次push都要保证front是最大值。除此之外,需要保证最大值的生命周期是k次循环
单调队列,当前 val > back时(back始终是队列最小值),将队列中小于back的元素出队,然后push(val),这可以保证front始终是最大值。当val<back时,直接将val加入队列。
在push的过程中front有两种情况,
一种是一直是最大值,直到k次循环后被挤出队列,所以需要保证后面push的val都比front小,否则最大值front不成立。此时val < front,若后面加入两个val1和val2,val1 < val2 < front,若front出队列,此使需要保证front依然是最大值,因此val 不但要小于front还要小于 back,即始终是单调递减队列。
另一种是,front不是最大值,此使为了让front是最大值,因为val 始终比 back 大,队列清空,只剩val
每次pop都要考虑最大值被pop的场景,如果val != front, 对结果没有影响,为什么没有影响呢,我i理解主要是因为单调队列里的元素出队顺序是固定的,正常情况永远是front先出队,因为front先入队。如果val!=front,那么他肯定也不等于front中任一个数
class MyQueue {
deque<int> dq;
public:
void push(int val) {
while(!dq.empty() && val > dq.back()) {
dq.pop_back();
}
dq.push_back(val);
return;
}
void pop(int val) {
if (!dq.empty() && val == dq.front()) {
dq.pop_front();
}
return;
}
int front() {
return dq.front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int len = nums.size();
vector<int> ans;
MyQueue win;
for(int i = 0; i < k; i++) {
win.push(nums[i]);
}
ans.push_back(win.front());
for(int i = k; i < len; i++) {
win.pop(nums[i-k]);
win.push(nums[i]);
ans.push_back(win.front());
}
return ans;
}
347.前K个高频元素
思路:前K个,堆排序,大顶堆。对频率进行堆排序。
c++中堆的实现用的优先队列 priority_queue
class mycomparison {
bool operator() (const pair<int, int>& lhs, const pair<int, int>& rhs ) {
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int, int> dp;
for(int i : nums) {
dp[i]++;
}
priority_queue<pair<int,int>, vector<pair<int, int>>, mycomparison> pri_que;
for(auto i : dp) {
pri_que.push(i);
if(pri_que.size() > k)
pri_que.pop();
}
vector<int> res(k);
for(int i = 0; i < k; i++) {
res[i] = pri_que.top().first;
pri_que.pop();
}
}
堆的用法还不是很熟悉。再练练