P2704 [NOI2001]炮兵阵地
题目描述
司令部的将军们打算在NM的网格地图上部署他们的炮兵部队。一个NM的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入输出格式
输入格式:
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
输出格式:
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
输入输出样例
输入样例#1: 复制
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出样例#1: 复制
6
题解:
看数据范围一眼状压DP。
考虑
f
[
i
]
[
j
]
[
k
]
f[i][j][k]
f[i][j][k]表示对于第
i
i
i行的第
j
j
j个状态且上一行的状态为第
k
k
k个,本来只考虑了前两维,然后就挂了,看题解后说要三维。因为在仅考虑两维时在DP的过程中会枚举重复计算
i
−
2
i-2
i−2的情况。
转移方程比较显然。
DP时枚举上面两行的状态,考虑合法的进行转移即可。
考虑预处理:
先把每一行的合法状态都枚举出来,存起来。然后预处理前两行的
f
f
f数组,因为每一行最多会对下两行有影响。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,f[105][70][70],tmp[105],sta[105][70],num[105][70],cnt[105],ans;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
char a;scanf(" %c",&a);
tmp[i]<<=1;tmp[i]+=(a=='P');
}
for(int i=1;i<=n;i++)
for(int j=0;j<(1<<m);j++)
if(!(j&(j<<2))&&!(j&(j<<1))&&(j&tmp[i])==j){
sta[i][++cnt[i]]=j;
for(int k=j;k;k>>=1) num[i][cnt[i]]+=((k&1)>0);
}
for(int i=1;i<=cnt[1];i++) f[1][i][0]=num[1][i];
for(int i=1;i<=cnt[2];i++)
for(int j=1;j<=cnt[1];j++)
if(!(sta[2][i]&sta[1][j])) f[2][i][j]=max(f[2][i][j],f[1][j][0]+num[2][i]);
for(int i=3;i<=n;i++)
for(int j=1;j<=cnt[i];j++)
for(int k=1;k<=cnt[i-1];k++)
if(!(sta[i][j]&sta[i-1][k]))
for(int l=1;l<=cnt[i-2];l++)
if(!(sta[i][j]&sta[i-2][l])&&!(sta[i-1][k]&sta[i-2][l]))
f[i][j][k]=max(f[i][j][k],f[i-1][k][l]+num[i][j]);
for(int i=1;i<=cnt[n];i++)
for(int j=1;j<=cnt[n-1];j++) ans=max(ans,f[n][i][j]);
printf("%d\n",ans);
return 0;
}
以下转载自大佬的题解:
总结一下此类题目的DP方法:若某个状态可以对下k行的状态造成影响,那么就要预处理前k行合法的,对于k + 1行及以后,判断某状态是否合法需要往上枚举k行,所以dp数组要开k + 1维,第一维表示行数,第二维表示现在的状态,再往后第n维表示上k - 2行的状态(其实不可能出太多行的,时间指数增长)