题目如下
本题的目标很简单,就是判断一个给定的正整数是否素数。
输入格式:
输入在第一行给出一个正整数N(≤ 10),随后N行,每行给出一个小于2
31
的需要判断的正整数。
输出格式:
对每个需要判断的正整数,如果它是素数,则在一行中输出Yes,否则输出No。
输入样例:
2
11
111
输出样例:
Yes
No
思路:
①判断n是不是素数,最直接的方法就是从2循环到n-1,但是这样会超时。
其实只需要循环到不超过sqrt(n)的整数就行了。
仔细想想,如果n是一个合数,假设其中两个因子是x和y,那么x与y一定是分配在(0,sqrt(n)]和[sqrt(n),n)之间的。这是相对应的
反过来讲,如果前一个区间没有n的因子(1除外),那么后一个区间也必然没有
②然而这样还是还是有一个测试数据报错,思路应该没错,很可能是有些边缘情况没有想到,试了试发现没有考虑n == 1的情况,这时应该输出No,改了之后就AC了
贴上代码(C)
#include <stdio.h>
#include <math.h>
int main() {
int N;
scanf("%d", &N);
while(N != 0) {
int m, flag = 1; //flag为1表示当前无因子
long long n;
scanf("%d", &n);
if(n == 1)
flag = 0;
m = floor(sqrt(n)+0.5); //对sqrt(n)四舍五入
for(int j = 2; j <= m; j++) {
if(n%j == 0) { //有因子,不是素数
flag = 0; break;
}
}
N--;
if(flag == 0)
printf("No\n");
if(flag == 1)
printf("Yes\n");
}
}
代码里对sqrt(n)四舍五入避免了浮点误差
定义一个m避免每次for循环重复计算sqrt(n)