基于KubeFATE的FATE-LLM任务实战

随着大型语言模型的不断蓬勃发展,相关新模型,新应用和新范式也在不断涌现,自 4 月发布以来,FATE-LLM 已经迭代发布了多个版本,不断完善大语言模型在联邦学习场景下的支持,以解决构建、使用大模型时的数据隐私保护问题以及公域数据短缺,可用数据不足的问题,在社区中得到了广泛的关注。

由 VMware AI Labs 团队发起并贡献的 KubeFATE 项目也在最近的多个版本中增强了对 FATE-LLM 在云原生环境下的支持,特别是针对 FATE-LLM 任务的专有需求,KubeFATE 在包括容器构建、GPU 调度与使用、模型存储等方面加入了专门的设计。本篇文章将给出一个基于 KubeFATE v1.11.2 和 FATE-LLM v1.2 的联邦大模型微调任务实例,并从任务设定、环境部署、所用技术、实验结果与分析等角度进行一个全方位的完整介绍。

任务设定与环境部署

在本文中,我们以 FATE-LLM v1.2 的 GPT2 教程为基础,设定一个两方的横向联邦学习场景,两方 Party ID 分别为 9999 和 10000,我们使用一个文本情感分类的任务来微调一个预训练的 GPT2 模型。该任务使用的数据集为 IMDB 影评数据集,与原教程的少量数据的示例不同,我们将训练数据集中全部 25000 条记录平均分给两方作为各方的训练数据,同时使用测试数据集的 25000 条记录作为评估数据。

对于实验环境,我们创建了两个 Kubernetes 集群,分别代表联邦任务的两个参与方。每个 Kubernetes 集群都包含一个 vSphere 虚拟机作为 GPU 节点,各虚拟机使用 PCI Passthrough 技术分别与一块 Nvidia V100 GPU 集成。我们使用 Docker 和 cri-docker,以及 nvidia-container-runtime 和 k8s-device-plugin 等组件以在 Kubernetes 集群中使用该 GPU。本实验所有关键依赖项的具体版本如下:

在这里插入图片描述

我们可以按照 KubeFATE 项目 GitHub 仓库中的 K8s 环境使用指南来部署 KubeFATE 和 FATE 集群。要使用 FATE-LLM,我们需要在用于部署 FATE 集群的 cluster.yaml 文件中显式指定某些设置。首先我们应该将 algorithm 参数设置为 “ALL”,并将 device 参数设置为 “GPU”,这表示我们要使用包含 FATE-LLM 和相关模块,以及带有 GPU 驱动和库的 FATE 容器镜像。此外,我们需要在 python 组件即 FATE-Flow 容器的配置中,在 resources 资源部分加入 GPU 资源的请求,例如本文使用了 “nvidia.com/gpu: 1”。以下是这些设置的示例:

在这里插入图片描述

需要注意的是,本文示例中 FATE-LLM 的训练任务是由 FATE-Flow 容器执行的,因此 GPU 资源分配给了名为 python 的容器。对于使用了 DeepSpeed 的 FATE-LLM 任务,我们需要为 nodemanager 组件配置该 GPU 资源设定。此外,我们建议为 FATE 集群开启持久化,从而使 KubeFATE 能够保存 FATE-LLM 任务中的预训练模型、微调模型、任务记录、日志等,防止这些关键文件在容器发生重启后被清理。

为了验证 FATE 集群部署后的环境和设置,我们可以使用 kubectl exec 进入 fateflow pod 并使用 nvidia-smi 命令检查其中可用的 GPU 资源。在 FATE 集群部署好后,我们就可以开始发起 FATE-LLM 任务了,FATE-LLM v1.2 中使用 HuggingFace 生态的 peft 库来支持多种高效的参数微调方法,在本文的实践中,我们将采用 LoRA、Prefix Tuning、Prompt Tuning 和 P-Tuning 的方法进行比较实验。

采用的 PEFT 方法

为了使用大语言模型来完成特定的下游任务,如果需要对模型的全部参数进行微调,会造成了巨大的时间开销与数据存储、传输成本。PEFT 方法在保持模型性能相当的前提下,通过减少微调的参数量以降低计算、存储、传输数据的成本。在本节中,我们将简要介绍采用的四种 PEFT 方法。

在这里插入图片描述

  • LoRA(Low-Rank Adaptation):LoRA 的核心思想是在适应新任务时,权重矩阵的更新不必与原始权重矩阵具有相同的 “秩”。因此对每个权重矩阵,我们可以引入两个低秩矩阵模块去代表该更新,微调时则仅训练更新这些低秩的矩阵。在实践中,LoRA 一般被应用到 attention 模块中。
  • Prefix Tuning:该方法在每个 transformer 层的输入之前构造一段任务相关的 virtual tokens 作为 prefix,在训练时只更新 prefix 部分的参数,而固定 transformer 中的其他部分参数。此外,为了防止直接更新 prefix 的参数导致训练不稳定的情况,prefix 层前可以加入了 MLP(Multi-layer Perception)结构,即将 prefix 分解为更小维度的 input 与 MLP 的组合。
  • Prompt Tuning:该方法可以看作是 Prefix Tuning 的简化版本,它只在输入层加入 prompt tokens,而并不需要加入 MLP 进行调整。
  • P-Tuning:该方法的思想也是在输入层添加可训练的 prompt 参数,由于 prompt 的词之间是彼此关联的,离散的 prompt 对于连续的神经网络并不是最优解,我们需要采用某种方法将它们关联起来。于是 P-Tuning 将一些伪 prompt 输入至 LSTM 或类似模型中,利用 LSTM 的输出向量来替代原始的 prompt token,最后一起输入至预训练语言模型中。

运行 FATE-LLM 任务

接下来我们便可以着手运行 FATE-LLM 任务。首先,guest 与 host 两方需将本地数据上传至 FATE 系统,即将预处理后的 CSV 文件分别放入各方的 FATE-Flow 容器中。然后我们可以在 KubeFATE 提供的 Jupyter Notebook 中使用以下代码将上传的数据绑定到 FATE 中。(对于 host 方,需要绑定 data_host 数据)

在这里插入图片描述

随后我们便可以在 guest 方提交联邦学习任务,具体流程与 FATE-LLM 仓库中的 GPT2 微调教程基本一致,以下是需额外注意的几点:

  • 因为本文加入了用于评估的测试数据,我们可以新建一个 Reader 组件读取该数据并作为 NN 组件的 validate_date;
  • 若任务出现超时或 Pin memory thread 退出等异常,可以尝试将 “save_to_local_dir=True, pin_memory=False” 添加到 TrainerParam;
  • 对于本文使用的二分类任务,我们为其配置了 Evaluation 组件用于评估训练后的模型的性能。

我们使用了多种不同的参数设置方式运行了若干个 FATE-LLM 任务来评估它们对训练过程与模型性能的影响:

  • 设置 TrainerParam 中的 CUDA 参数来比较训练时使用 CPU 和 GPU 的差异
  • 设定 peft_type 与 peft_config 参数来采用不同的 PEFT 方法以及配置
  • 设置 aggregate_every_n_epoch 参数比较不同的本地训练轮次对训练效果的影响
  • 调整 TrainerParam 中的 epoch 参数找到模型效果最好的轮次(最大为 10)
  • 我们实现了非 PEFT 的 GPT2 Full Fine-tuning 方法,并以此作为对照进行了对比实验

实验结果分析

我们对使用的设备类型、PEFT 方法以及运行的 epoch 次数均进行了多元化的设置。模型性能通过 AUC、F1-score 等机器学习指标进行评估。除此以外,我们还列举了若干实验本身的数据,包括聚合过程的数据传输量,任务运行时间等,便于进行更深入的分析。在使用 PEFT 方法对模型训练过程进行优化时,我们尽量使用 peft 库默认的参数配置。以下是我们实验的部分结果数据:

在这里插入图片描述

通过对比表格中与模型性能相关的指标,我们可以看到 LoRA、Prefix Tuning 方法与 Full Fine-tuning 对照实验的模型性能相当。与此同时,它们的数据传输量、整体训练时间也显著低于 Full Fine-tuning,更进一步,我们观察到设定更大一点的模型聚合间的本地训练轮次(同时总轮次不变),能够进一步降低数据传输成本,同时不影响模型性能,这证实了联邦学习与 PEFT 方法之于微调大语言模型是可行且高效的。而对于另两种 PEFT 方法,模型性能则有较大的差距,我们猜测这与可训练参数过少或相关 PEFT 组件参数设置有关,导致模型泛化能力受限。我们在接下来的实验中也将尝试其他方法和参数组合以进一步验证。

总结与展望

本文介绍了使用 KubeFATE 从部署、配置到发起运行 FATE-LLM 任务的完整流程。我们展示了不同配置下的实验结果,并进行了分析。实验数据证实了将大语言模型与联邦学习架构结合的合理性,并体现出 PEFT 方法的强大性能。其在显著降低通信成本、数据存储成本的同时,将模型性能维持在一个相当可观的水平。

本文提供的实例基于 FATE-LLM v1.2 版本,可作为横向联邦场景下,使用云原生基础设施对同构的大语言模型进行 PEFT 的微调训练的一个参考。除 GPT2 示例以外,KubeFATE 也支持 FATE-LLM v1.2 中的其他模型和训练方法,例如使用 DeepSpeed 进行 ChatGLM-6B、Llama 等模型的训练。而在最新发布的 v1.3 版本中,FATE-LLM 项目引入了 FTL-LLM 面向大语言模型的联邦迁移学习范式,并实现了联邦 Offsite-Tuning 框架。我们会在后续的 KubeFATE 迭代中进一步加强相关的支持,也欢迎社区开发者和用户的参与和关注。

内容来源|公众号:VMware 中国研发中心

有任何疑问,欢迎扫描下方公众号联系我们哦~

请添加图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生就业服务平台管理系统按照操作主体分为管理员和用户。管理员的功能包括学生档案管理、字典管理、试卷管理、试卷选题管理、试题表管理、考试记录表管理、答题详情表管理、错题表管理、法律法规管理、法律法规收藏管理、法律法规留言管理、就业分析管理、论坛管理、企业管理、简历管理、老师管理、简历投递管理、新闻资讯管理、新闻资讯收藏管理、新闻资讯留言管理、学生信息管理、宣传管理、学生管理、职位招聘管理、职位收藏管理、招聘咨询管理、管理员管理。用户的功能等。该系统采用了Mysql数据库,Java语言,Spring Boot框架等技术进行编程实现。 大学生就业服务平台管理系统可以提高大学生就业服务平台信息管理问题的解决效率,优化大学生就业服务平台信息处理流程,保证大学生就业服务平台信息数据的安全,它是一个非常可靠,非常安全的应用程序。 管理员权限操作的功能包括管理新闻信息,管理大学生就业服务平台信息,包括考试管理,培训管理,投递管理,薪资管理等,可以管理新闻信息。 考试管理界面,管理员在考试管理界面中可以对界面中显示,可以对考试信息的考试状态进行查看,可以添加新的考试信息等。投递管理界面,管理员在投递管理界面中查看投递种类信息,投递描述信息,新增投递信息等。新闻信息管理界面,管理员在新闻信息管理界面中新增新闻信息,可以删除新闻信息。新闻信息类型管理界面,管理员在新闻信息类型管理界面查看新闻信息的工作状态,可以对新闻信息的数据进行导出,可以添加新新闻信息的信息,可以编辑新闻信息信息,删除新闻信息信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值