- 博客(1)
- 收藏
- 关注
原创 机器学习(一)~模型评估与选择 之 *经验误差与过拟合
机器学习(一)~模型评估与选择 之 *经验误差与过拟合1. 错误率与准确率2. 泛化能力3. 偏差与方差4. 过拟合与欠拟合出现原因:应对方案1. 错误率与准确率目的:得到泛化误差最小方法:由于测试集实现未知,只能通过经验误差来评估泛化误差错误率(error rate):分类错误的样本数占样本总数的比例准确率(accuracy):1 - 错误率例如:当损失函数是0-1损失时,测试误差/错误率etest 和准确率rtest 为:显然,etest + rtest = 12. 泛化能力误
2020-05-14 22:03:18 742
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人