mac将自己网络暴露到公网

安装服务

 brew tap probezy/core && brew install cpolar
 // 安装cpolar
sudo cpolar service install
// 启动服务
sudo cpolar service start

访问管理网站
http://127.0.0.1:9200/#/tunnels/list

菜单“隧道列表” 》 编辑 自定义暴露的端口

再到在线列表中查看公网域名

在这里插入图片描述
我这里8099端口启动了自己的项目

先用本地地址验证接口是否正常,没问题后用公网地址请求
在这里插入图片描述
可以正常访问说明没问题

### 使用LoRA技术微调SAM2模型 为了使用LoRA(Low-Rank Adaptation)技术对SAM2模型进行微调,可以通过以下方式实现。这种方法的核心在于利用低秩分解来减少参数更新的数量,从而降低计算成本并提高效率。 #### 1. LoRA基本原理 LoRA是一种高效的模型微调方法,其核心思想是对权重矩阵进行低秩近似分解。具体来说,在原始权重矩阵 \( W \in R^{m \times n} \) 的基础上引入两个可学习的小型矩阵 \( A \in R^{m \times r} \) 和 \( B \in R^{r \times n} \),其中 \( r << min(m, n) \)[^1]。最终的权重矩阵表示为: \[ W_{new} = W + AB \] 这种方式仅需优化少量参数即可达到良好的效果,特别适合于大规模预训练模型的微调场景。 #### 2. SAM2模型与LoRA结合 对于SAM2模型而言,可以采用类似的策略对其进行微调。由于SAM模型本身是一个复杂的视觉基础模型,直接全量微调可能会带来较大的计算开销和存储需求。因此,通过LoRA技术能够有效缓解这一问题。 在实际操作中,可以选择特定层(如卷积层或注意力机制中的线性变换部分)应用LoRA。例如,如果目标是增强模型的空间感知能力,则可以在卷积层上实施 **Conv-LoRA** 技术[^2]。该技术通过插入由MoE(Mixture of Experts)管理的轻量级卷积运算,进一步减少了额外参数数量。 以下是基于PyTorch框架的一个简单代码示例,展示如何将LoRA应用于SAM2模型的部分模块: ```python import torch.nn as nn from lora import apply_lora_to_linear_layer # 假设有一个lora库用于快速集成 class SAMLORA(nn.Module): def __init__(self, base_model, rank=4): super(SAMLORA, self).__init__() self.base_model = base_model # 对指定层应用LoRA for name, module in self.base_model.named_modules(): if isinstance(module, nn.Linear): # 针对线性层 apply_lora_to_linear_layer(module, rank) def forward(self, *args, **kwargs): return self.base_model(*args, **kwargs) ``` 上述代码片段展示了如何针对 `nn.Linear` 层添加LoRA支持。开发者可以根据实际情况扩展到其他类型的网络组件,比如卷积层或其他自定义结构。 #### 3. 微调过程注意事项 在执行具体的微调过程中需要注意以下几个方面: - 数据集准备:确保数据集中包含足够的标注信息以便指导模型学习新的特征模式。 - 学习率设置:相比传统全量微调方案,LoRA通常需要更低的学习率以稳定收敛。 - 性能评估:定期验证模型表现是否满足预期指标要求,并据此调整超参配置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一米阳光zw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值