在此示例中,使用了 CIFAR-10 数据集,其中包含10个类别的60000个32x32彩色图像。首先加载和预处理数据,然后定义了一个简单的卷积神经网络模型。接下来,定义了训练选项,包括优化器、学习率、最大训练周期数等。然后,使用训练选项训练深度学习模型,并评估其在测试集上的性能。这是一个简单的图像分类示例,可以根据自己的数据和任务来调整模型结构和参数,并使用不同的数据集来进行训练和评估。
% 步骤1:准备数据
% 假设你有一个包含图像和标签的数据集,例如 CIFAR-10 数据集
% 步骤2:加载和预处理数据
[XTrain, YTrain, XTest, YTest] = loadData(); % 加载数据集
% 步骤3:定义深度学习模型
layers = [
imageInputLayer([32 32 3]) % 输入层,图像大小为32x32,RGB通道数为3
convolution2dLayer(3, 16, 'Padding', 'same') % 卷积层
batchNormalizationLayer % 批归一化层
reluLayer % ReLU激活函数层
maxPooling2dLayer(2, 'Stride', 2) % 最大池化层
convolution2dLayer(3, 32, 'Padding', 'same') % 卷积层
batchNormalizationLayer % 批归一化层
reluLayer % ReLU激活函数层
maxPooling2dLayer(2, 'Stride', 2) % 最大池化层
fullyConnectedLayer(10) % 全连接层,输出类别数为10
s