nevermorsf
码龄7年
求更新 关注
提问 私信
  • 博客:40,168
    40,168
    总访问量
  • 17
    原创
  • 6
    粉丝
  • 110
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
加入CSDN时间: 2018-08-10
博客简介:

qq_42932667的博客

查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得5次评论
  • 获得92次收藏
  • 代码片获得566次分享
创作历程
  • 2篇
    2023年
  • 2篇
    2022年
  • 8篇
    2021年
  • 5篇
    2020年
成就勋章
TA的专栏
  • Python编程
    11篇
  • 机器学习
    5篇
  • 科研之路
    4篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 9

TA参与的活动 1

创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

解决load模型报错Can‘t get attribute ‘xxx‘ on <module ‘__main__‘

在迁移学习加载bert预训练模型做特征抽取,训练fc层后save模型,在另外的文件load模型报如题的错误。
原创
发布博客 2023.05.11 ·
708 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

解决报错Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

查阅大量原因,发现均不符合我的问题,最基础的问题就是并未将所有tensor和model放入gpu中,导致cpu与gpu冲突,此时只需将model和所有输入均使用命令:查看model是否在GPU上,然后利用命令:查看输出是否也在同一cuda上,xxx是输入的变量名称。若冲突,则使用以下方法:2.使用cuda()方法:然而,当我将定义的model和data均转换为cuda上运行,仍然报错,问题未解决。突然发现,因为迁移学习我只加了fc层,bert做特征抽取,并未更新参数,此时我只将定义的model放入g
原创
发布博客 2023.05.10 ·
2254 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Python 解决 local variable ‘xxx‘ referenced before assignment

Python 解决local variable ‘xxx‘ referenced before assignment问题
原创
发布博客 2022.07.25 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python 利用Pandas的diff()函数解决时间差问题

Pandas数据处理,去重时间间隔太短的类目
原创
发布博客 2022.07.19 ·
1268 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Python实现哈夫曼编码(Huffman code)

如题,通过python实现哈夫曼编码,代码如下:哈夫曼编码的思想为:在节点中每次找出两个出线频次最低的组合在一起,当迭代到最后只剩下一个节点时,该节点就为根节点,所有节点构成了huffman树,通过对树的左右孩子的路径设置为0,1,实现每一个字符的huffman编码。import random# 统计字符出现频次,然后每次找出两个频次最低的,合为一个节点,最后只有一个节点时,就构成了树。然后对树进行编码,并进行输出即可# 定义哈夫曼树节点的类:class huffmannode(object
原创
发布博客 2021.12.15 ·
8067 阅读 ·
7 点赞 ·
0 评论 ·
60 收藏

解决matplotlib绘图无法显示中文字符

今天在绘图时发现直接将plot坐标轴写为中文,无法正常显示,查阅资料后整理出三种解决方案,记录一下问题:中文无法显示x = range(0, 120)y = [random.randint(25, 30) for i in range(120)]plt.figure(figsize=(20, 8), dpi=80)plt.plot(x, y)_xticks = ["10点{}分".format(i) for i in range(60)]_xticks += ["11点{}分".format
原创
发布博客 2021.11.21 ·
1806 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习之数据分析与特征工程

通过七月在线的限免课程,学习了数据分析与特征工程,记录一下学习的过程供日后回顾问题与建模首先需要明确要解决的问题:回归?分类?根据要解决的问题进行建模。建模流程为:识别问题,理解数据,数据预处理,建模与评估。具体的任务有具体的解决方案与建模流程数据分析与处理案例:根据房屋出租信息预测房屋热度。该案例是一个有监督问题(有训练集(有标签),有测试集),是一个三分类问题考虑:什么是热度?(被查询/点击的次数)。什么影响热度? 数据集示例:统计分布,判断离群点与数据分布详情具体方法,绘制
原创
发布博客 2021.11.20 ·
2620 阅读 ·
10 点赞 ·
1 评论 ·
1 收藏

机器学习之梯度下降法的代码实现

什么是梯度下降法梯度下降法已经有很多其他博主做了充分的介绍,可以自行百度,我个人觉得Evan这个帖子讲的很清楚。这里不在赘述,感兴趣的可以自行查阅。代码实现梯度下降法批量梯度下降法(batch_gradient_descent)批量梯度下降法指的是在每次调整梯度寻找最优解的时候都将所有样本考虑在内。优点:收敛的最优解准确,数量级小时收敛也很快。缺点:样本数量多时,收敛速度慢,更新一次梯度需要很长时间。代码实现:import numpy as npimport timestart
原创
发布博客 2021.11.09 ·
1590 阅读 ·
3 点赞 ·
2 评论 ·
14 收藏

Python---机器学习之线性回归记录

机器学习之线性回归记录记录一下线性回归入门遇到的Python之中模块与函数Numpynumpy.random.rand: 创建一个给定类型的数组,将其填充在一个均匀分布的随机样本[0, 1)中。例如:生成单个随机数:`print(np.random.rand() 生成单个随机数的结果生成二维数组:print(np.random.rand(2,3))生成二维数组的结果numpy.randon.randn:从标准正态分布中返回一个或多个样本值。 例如:单个样本值:print(np.r
原创
发布博客 2021.10.27 ·
138 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Python 生成固定大小的随机数文件

在实验过程中需要生成固定大小的随机数文件来进行覆盖,通过python实现。`def randomdata_give(size, danwei): with open("C:/Users/12590/Desktop/randomdata1/randomdata_128.txt", "w") as f: for i in range(1, int(size * danwei * 1024 / 64)): f.write(str(random.randint(10
原创
发布博客 2021.07.24 ·
924 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

利用Python实现列表中的元素循环右移n位

利用Python实现列表中的元素循环右移n位RT,将列表中的元素循环向右移动固定的位数,可以通过迭代实现def pailie(data, key): n = len(data) temp = data[n - 1] list_temp = [0 for i in range(0, n)] j = 1 list_temp[0] = temp for i in data[0:-1]: list_temp[j] = i j +=
原创
发布博客 2021.07.17 ·
3083 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

Python 初始化一个长度为n的列表并赋初值

使用Python声明固定长度的列表并赋初值有以下几种办法方法一:直接声明如下,声明一个长度为5,初值为0的列表,可以直接定义:list = [0,0,0,0,0]print(list)结果如下:方法二:list2 = [3 for x in range(0,10)]print(list2)该方法可以声明一个初值为3,长度为10的列表。for前的值为初值,range为长度...
原创
发布博客 2021.07.17 ·
10049 阅读 ·
5 点赞 ·
1 评论 ·
4 收藏

关于Merkle hash tree (MHT)相关的概念与问题

关于Merkle hash tree (MHT)相关的概念与问题一、概念Merkle Hash Tree是一种广泛使用的身份验证结构,可用于有效地检查一组元素是否被未改变,完整地存储。MHT是一种二叉树,其中叶节点包含可信数据的散列,每个内部节点存储其子节点的散列值。下图描述了认证结构的示例,其中为有序的一组数据块a1、a2、…,a8 构建MHT。;其中每一个内部节点以及根节点都是从其两个子节点生成的。例如,h2=h(h5∥h6)、h3=h(h(A1)∥h(A2)) 和 HR=h(h1∥h2)。元素ai
原创
发布博客 2020.11.11 ·
961 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

使用Python完成凑零钱问题(dfs思想)

使用Python完成凑零钱问题(dfs思想)题目描述韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有 10410^4104枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。输入格式:输入第一行给出两个正整数:N(≤104≤10^4≤104)是硬币的总个数,M(≤102≤10^2≤102)是韩梅梅要付的款额。第二行给出 N 枚硬币的正整数面值。数字间以空格分隔。输出格式:在一
原创
发布博客 2020.10.28 ·
1101 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

关于DHT网络及其缺陷的初步了解

关于DHT网络及其缺陷的初步了解DHT(Distributed Hash Table)网络简介DHT 网络全称是分布式哈希表网络,是一种分布式存储网络 。DHT 网络具有以下 3 个特性:1)可用性,DHT 网络能够将数据分散存储到不同节点上,保证部分节点退出网络后,存储在其他节点上的数据仍能被提取。2)大规模且分布范围广。3)定期更新清除功能。只需设置 DHT 网络的更新周期,DHT 网络能定期自动清除节点上存储的数据DHT网络具备的特性让它可以有效的避免单一服务器单点故障造成的网络瘫痪,基
原创
发布博客 2020.10.25 ·
2319 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

关于学习密码学知识的一些基础知识( trapdoor function)

关于学习密码学知识的一些基础知识( trapdoor function)trapdoor function陷门函数:正向计算是很容易的,但若要有效的执行反向计算则必须要知道一些secret/key/knowledge/trapdoor,也称为伪随机置换,可用于构造公钥密码系统。若 f 为陷门函数,则 y = f (x) 是很容易计算的,但若要计算 x = f(-1) (y) 则是困难的,若已知一些额外的knowledge(trapdoor/key) k , 则计算 x = f(-1) (y,k)
原创
发布博客 2020.10.21 ·
1391 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Python实现pta平台2020-1 找第k小的数 (25分)问题

2020-1 找第k小的数 (25分)设计一个平均时间为O(n)的算法,在n(1<=n<=1000)个无序的整数中找出第k小的数。提示:函数int partition(int a[],int left,int right)的功能是根据a[left]–a[right]中的某个元素x(如a[left])对a[left]~a[right]进行划分,划分后的x所在位置的左段全小于等于x,右段全大于等于x,同时利用x所在的位置还可以计算出x是这批数据按升非降序排列的第几个数。因此可以编制int fin
原创
发布博客 2020.10.13 ·
591 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏
加载更多