良好的码风是进步开始。
(虽然怎么看现在的代码,都还是不够好看)
Description 题目描述
设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
Input
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
Output
只需输出一个整数,表示2条路径上取得的最大的和。
思路
DP,四维枚举。
枚举i1,j1,i2,j2,代表俩条路,一条走到i1,j1,一条走到i2,j2
f[i1][j1][i2][j2]为俩条路走到这的最大值。
代码
#include<cstdio>
#include<iostream>
using namespace std;
int n,a[10][10],f[10][10][10][10];
void init(){
int i,j,k;
scanf("%d",&n);
scanf("%d%d%d",&i,&j,&k);
while(i!=0||j!=0||k!=0)
{
a[i][j]=k;
scanf("%d%d%d",&i,&j,&k);
}
}
void work(){
for(int i1=1;i1<=n;++i1)
for(int j1=1;j1<=n;++j1)
for(int i2=1;i2<=n;++i2)
for(int j2=1;j2<=n;++j2)
{
int l1,l2;
l1=max(f[i1-1][j1][i2-1][j2],f[i1-1][j1][i2][j2-1]);
l2=max(f[i1][j1-1][i2-1][j2],f[i1][j1-1][i2][j2-1]);
//max(l1,l2)就是上一步的最大值了
if(i1==i2&&j1==j2) //重复,加一次本位置
f[i1][j1][i2][j2]=max(l1,l2)+a[i1][j1];
else //不重复,加俩次
f[i1][j1][i2][j2]=max(l1,l2)+a[i1][j1]+a[i2][j2];
}
}
int main(){
init();
work();
printf("%d",f[n][n][n][n]); //输出最终俩路线都到达的最大取值
}