D Meaningless Sequence (找规律)
解法一:
要推公式找规律是很难推的,所以直接打表可以发现规律:
SUM[2^n,2^(n+1) ) = c*(c+1)^n
SUM[0,2^n) = (c+1)^n
所以可以先用公式把0到小于等于该数的最大的一个2的指数之间的和算出来,比如数为1011001,可以用公式先把[0,1000000)的和算出来。剩下的数设为A,则上面的A=(11001)(二进制),然后找出小于等于A的最大的一个2的指数,设为2^n,那么可以用区间[2^n,2^(n+1) )的和来填充一部分A,但是该区间和要乘上一个(c^k),k初始为0,每这样填充一次就要加1(打表看以看出为啥),就这样填充后再另剩下的数为A循环进行。总体就是从下标1遍历给的字符串,遍历到1就填充。另外,1需要特判掉。
这个做法我绕了好久,还是下面那个做法好理解一下,但是这个是比第二个快很多的,接近线性。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const double PI = acos(-1.0);
ll mod=1000000007;
int arr[110];
ll c,n,ans;
string a;
ll qmi(ll a,ll b){
ll res=1;
while(b){
if(b&1) res=(res*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return res;
}
int main(){
cin>>a>>c;
n=a.size();
if(n==1&&a[0]=='1'){
cout<<1+c<<endl;
return 0;
}
ans+=qmi(c+1,n-1);
for(int i=1,cnt=0;i<n;i++){
if(a[i]=='1') ans=(ans+(qmi(c,cnt++)*c%mod*qmi(c+1,n-i-1)%mod))%mod;
if(i==n-1) ans=(ans+qmi(c,++cnt))%mod;
}
cout<<ans<<endl;
}
解法二:
另外还有一种方法,打表可以发现 a[n]=c^(n的二进制中1的个数),即a[n]=c^(popcount(n) )。发现了这个就很好做了,设给的数是a,只需要统计一下0到n之间,有多少个数他的二进制中1的个数是k,这种数的数量设为cnt,那么该种数的贡献就是cnt*(c^k)。而统计的方法是:从前往后遍历给的二进制字符串,如果该位是1,就假设该位是0,那么后面的可以随便取,咋取都不会超过原本的数,那么这种情况下,二进制中1的个数为k的数量就是(该位之前1的数量)+C[该位后的位数][k](需要预处理一下逆元和阶乘以便求组合数),然后用该数量计算贡献加到答案里,继续遍历找1…………
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const double PI = acos(-1.0);
ll mod=1000000007,fac[3010],infac[3010],c,n,ans;
string a;
ll qmi(ll a,ll b){
ll res=1;
while(b){
if(b&1) res=(res*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return res;
}
void init(){
fac[0]=infac[0]=1;
for(int i=1;i<=n;i++){
fac[i]=i*fac[i-1]%mod;
infac[i]=qmi(fac[i],mod-2);
}
}
ll fc(int a,int b){
return fac[a]*infac[b]%mod*infac[a-b]%mod;
}
int main(){
cin>>a>>c;
n=a.size();
init();
for(int i=0,cnt=0;i<n;i++){
if(a[i]=='1'){
for(int j=0;j<=n-i-1;j++) ans=(ans+fc(n-i-1,j)*qmi(c,j+cnt)%mod)%mod;
cnt++;
}
if(i==n-1) ans=(ans+qmi(c,cnt))%mod;
}
cout<<ans<<endl;
}