2020CCPC长春 部分题解

Meaningless Sequence (找规律)

  解法一:

        要推公式找规律是很难推的,所以直接打表可以发现规律:

                        SUM[2^n,2^(n+1) ) = c*(c+1)^n

                        SUM[0,2^n) = (c+1)^n

        所以可以先用公式把0到小于等于该数的最大的一个2的指数之间的和算出来,比如数为1011001,可以用公式先把[0,1000000)的和算出来。剩下的数设为A,则上面的A=(11001)(二进制),然后找出小于等于A的最大的一个2的指数,设为2^n,那么可以用区间[2^n,2^(n+1) )的和来填充一部分A,但是该区间和要乘上一个(c^k),k初始为0,每这样填充一次就要加1(打表看以看出为啥),就这样填充后再另剩下的数为A循环进行。总体就是从下标1遍历给的字符串,遍历到1就填充。另外,1需要特判掉。

        这个做法我绕了好久,还是下面那个做法好理解一下,但是这个是比第二个快很多的,接近线性。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const double PI = acos(-1.0);

ll mod=1000000007;
int arr[110];
ll c,n,ans;
string a;

ll qmi(ll a,ll b){
	ll res=1;
	while(b){
		if(b&1) res=(res*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return res;
}

int main(){
	cin>>a>>c;
	n=a.size();
	if(n==1&&a[0]=='1'){
		cout<<1+c<<endl;
		return 0;
	}
	ans+=qmi(c+1,n-1);
	for(int i=1,cnt=0;i<n;i++){
		if(a[i]=='1') ans=(ans+(qmi(c,cnt++)*c%mod*qmi(c+1,n-i-1)%mod))%mod;
		if(i==n-1) ans=(ans+qmi(c,++cnt))%mod;
	}
	cout<<ans<<endl;
}

    解法二: 

        另外还有一种方法,打表可以发现 a[n]=c^(n的二进制中1的个数),即a[n]=c^(popcount(n) )。发现了这个就很好做了,设给的数是a,只需要统计一下0到n之间,有多少个数他的二进制中1的个数是k,这种数的数量设为cnt,那么该种数的贡献就是cnt*(c^k)。而统计的方法是:从前往后遍历给的二进制字符串,如果该位是1,就假设该位是0,那么后面的可以随便取,咋取都不会超过原本的数,那么这种情况下,二进制中1的个数为k的数量就是(该位之前1的数量)+C[该位后的位数][k](需要预处理一下逆元和阶乘以便求组合数),然后用该数量计算贡献加到答案里,继续遍历找1…………

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const double PI = acos(-1.0);

ll mod=1000000007,fac[3010],infac[3010],c,n,ans;
string a;

ll qmi(ll a,ll b){
	ll res=1;
	while(b){
		if(b&1) res=(res*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return res;
}

void init(){
	fac[0]=infac[0]=1;
	for(int i=1;i<=n;i++){
		fac[i]=i*fac[i-1]%mod;
		infac[i]=qmi(fac[i],mod-2);
	}
	
}

ll fc(int a,int b){
	return fac[a]*infac[b]%mod*infac[a-b]%mod;
}

int main(){
	cin>>a>>c;
	n=a.size();
	init();
	for(int i=0,cnt=0;i<n;i++){
		if(a[i]=='1'){
			for(int j=0;j<=n-i-1;j++) ans=(ans+fc(n-i-1,j)*qmi(c,j+cnt)%mod)%mod;
			cnt++;
		}
		if(i==n-1) ans=(ans+qmi(c,cnt))%mod;
	}
	cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值