【机器学习之线性回归详解 (二) 】

线性回归 (二)

1 梯度下降(Gradient Descent)

1.1 什么是梯度下降算法

梯度下降法的基本思想可以类比为一个下山的过程。
假设这样一个场景:

一个人 被困在山上,需要从山上下来 (i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。

因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。

具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

梯度下降的基本过程就和下山的场景很类似。
首先,我们有一个 可微分的函数 。这个函数就代表着一座山。

我们的目标就是找到 这个函数的最小值 ,也就是山底。

根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是 找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数值变化最快的方向。 所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。

步骤

  • 输入:初始化位置S;每步距离为a 。输出:从位置S到达山底
  • 步骤1:令初始化位置为山的任意位置S
  • 步骤2:在当前位置环顾四周,如果四周都比S高返回S;否则执行步骤3
  • 步骤3: 在当前位置环顾四周,寻找坡度最陡的方向,令其为x方向
  • 步骤4:沿着x方向往下走,长度为a,到达新的位置S‘
  • 步骤5:在S‘位置环顾四周,如果四周都比S‘高,则返回S‘。否则转到步骤
    小结:通过循环迭代的方法不断更新位置S (相当于不断更新权重参数w)
    在这里插入图片描述

1.2 梯度的概念

梯度是微积分中一个很重要的概念

在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率;

在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向;

在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。

1.3 梯度下降举例

单变量函数的梯度下降
在这里插入图片描述
导数趋近于0的时候,接近于最低点,此时已经基本靠近函数的最小值点

1.4 梯度下降(Gradient Descent)公式

在这里插入图片描述
①.α的含义
α在梯度下降算法中被称作为 学习率 或者 步长 ,意味着我们可以通过α来控制每一步走的距离,控制参数不要走太快,错过了使损失函数取最小值的点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!
②为什么梯度要乘以一个负号?
梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号

所以有了梯度下降这样一个优化算法,回归就有了自动学习的能力

2. 梯度下降优化原理

2.1梯度下降的相关概念

在这里插入图片描述
其中xi表示第i个样本的特征,yi表示第i个样本对应的输出,hθ(xi)为假设函数

2.2梯度下降法的推导流程

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小结:
①梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和深度学习中用来递归性地逼近最小偏差模型

②梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)

③线性回归的回归系数可以通过梯度下降算法找到损失函数的极小值得到

④梯度下降中,学习率(Learning rate)是一个很重要的参数,它决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度

3 其他梯度下降算法

3.1全梯度下降算法(FGD)

全梯度下降算法每次迭代时, 使用全部样本的梯度值,是梯度下降法最常用的形式,具体做法也就是在更新参数时使用所有的样本来进行更新。
计算训练集所有样本误差,对其求和再取平均值作为目标函数。
权重向量沿其梯度相反的方向移动,从而使当前目标函数减少得最多。
其是在整个训练数据集上计算损失函数关于参数的梯度:
在这里插入图片描述
由于我们有m个样本,这里求梯度的时候就用了所有m个样本的梯度数据。

但是因为在执行每次更新时,我们需要在整个数据集上计算所有的梯度,所以批梯度下降法的速度会很慢,同时,全梯度下降法无法处理超出内存容量限制的数据集。全梯度下降法同样也不能在线更新模型,即在运行的过程中,不能增加新的样本。

3.2.随机梯度下降算法(SGD)

随机梯度下降算法每次迭代时, 随机选择并使用一个样本梯度值

由于FG每迭代更新一次权重都需要计算所有样本误差,而实际问题中经常有上亿的训练样本,故效率偏低,且容易陷入局部最优解,因此提出了随机梯度下降算法。

其每轮计算的目标函数不再是全体样本误差,而仅是单个样本误差,即 每次只代入计算一个样本目标函数的梯度来更新权重,再取下一个样本重复此过程,直到损失函数值停止下降或损失函数值小于某个可以容忍的阈值。

此过程简单,高效,通常可以较好地避免更新迭代收敛到局部最优解。其迭代形式为在这里插入图片描述
但是由于,SG每次只使用一个样本迭代,若遇上噪声则容易陷入局部最优解。

Sklearn提供了随机梯度下降的API

from sklearn.linear_model import SGDRegressor

3.3. 小批量梯度下降算法(mini-bantch)

小批量梯度下降算法每次迭代时, 随机选择并使用小批量的样本梯度值

小批量梯度下降算法是FG和SG的折中方案,在一定程度上兼顾了以上两种方法的优点。

每次从训练样本集上随机抽取一个小样本集,在抽出来的小样本集上采用FG迭代更新权重。

被抽出的小样本集所含样本点的个数称为batch_size,通常设置为2的幂次方,更有利于GPU加速处理。

特别的,若batch_size=1,则变成了SG;若batch_size=n,则变成了FG.其迭代形式为
在这里插入图片描述

上式中,也就是我们从m个样本中,选择x个样本进行迭代(1<x<m)

3.4. 随机平均梯度下降算法(SAG)

随机平均梯度下降算法每次迭代时, 随机选择一个样本的梯度值和以往样本的梯度值的均值

在SG方法中,虽然避开了运算成本大的问题,但对于大数据训练而言,SG效果常不尽如人意,因为每一轮梯度更新都完全与上一轮的数据和梯度无关。

随机平均梯度算法克服了这个问题,在内存中为每一个样本都维护一个旧的梯度,随机选择第i个样本来更新此样本的梯度,其他样本的梯度保持不变,然后求得所有梯度的平均值,进而更新了参数。

如此,每一轮更新仅需计算一个样本的梯度,计算成本等同于SG,但收敛速度快得多。
其迭代形式为:
在这里插入图片描述

我们知道sgd是当前权重减去步长乘以梯度,得到新的权重。sag中的a,就是平均的意思,具体说,就是在第k步迭代的时候,我考虑的这一步和前
面n-1个梯度的平均值,当前权重减去步长乘以最近n个梯度的平均值。

n是自己设置的,当n=1的时候,就是普通的sgd。

这个想法非常的简单,在随机中又增加了确定性,类似于mini-batch sgd的作用,但不同的是,sag又没有去计算更多的样本,只是利用了之前计算出来的梯度,所以每次迭代的计算成本远小于mini-batch sgd,和sgd相当。效果而言,sag相对于sgd,收敛速度快了很多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值