【AI】神经网络

文章讨论了在特征过多时线性模型如逻辑回归的局限性,提出了非线性多项式模型的概念。当特征数量巨大,如图像识别中的像素点,传统的逻辑回归无法有效处理。此时,神经网络成为解决方案,其结构模仿大脑神经元的工作方式,能自学习并生成新的特征。文章还介绍了神经网络的前向传播算法,并探讨了神经网络如何通过多层结构处理多类分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、非线性假设

引言:无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。

1、当我们使用 x1 , x2 的多次项式进行预测时,我们可以应用的很好。 之前我们已经看到过,使用非线性的多项式项,能够帮助我们建立更好的分类模型。

假设我们有非常多的特征,例如大于100个变量,我们希望用这100个特征来构建一个非线性的多项式模型,结果将是数量非常惊人的特征组合,

即便我们只采用两两特征的组合 (x1x2+x1x3+x1x4+...+x2x3+x2x4+...+x99x100) ,我们也会有接近5000个组合而成的特征。这对于一般的逻辑回归来说需要计算的特征太多了。

2、假设我们希望训练一个模型来识别视觉对象(例如识别一张图片上是否是一辆汽车),我们怎样才能这么做呢?

一种方法是我们利用很多汽车的图片和很多非汽车的图片,然后利用这些图片上一个个像素的值(饱和度或亮度)来作为特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值