# LeetCode04 寻找两个有序数组的中位数(java实现)
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 1:
nums1 = [1, 2]
nums2 = [3,4]
则中位数是 (2 + 3)/2 = 2.5
解题思路
- 第一眼看到这个题目的时候,首先想到的是将给定的2个数组合并成一个数组,然后求一个数组的中位数的,一个数组的中位数对于我们来说很熟悉。但是题目中明确要求时间复杂度为O(log(m + n)),这就给之前的那个单纯的想法判了死刑。但是同时也打开了另外一扇窗,就是这个时间复杂度很明显是二分差查找法的特征。因此想到用二分法来解决。
- 那么这个二分法究竟怎么来解决这个题目呢?首先我们定义nums1和nums2的长度分别为m和n,如果m+n为奇数,那么中位数为numCombination[(m+n)/2 + 1],加1的原因是下标和第几个元素之间相差1。如果m+n为偶数,那么中位数为numCombination[(m+n)/2 + 1]+numCombination[(m+n)/2]相加除以2。以上numCombination指的是nums1和nums2合并后的数组,用作分析用。
- 所以本题目变成了两个有序数组A(m), B(n),k = (m+n)/2,奇数时找k+1大的数,偶数是找第k大和第k+1大的数再除2(依然是数组中的第几个,和下标相差1)。即题目转换成了求2个有序数组中的第k大数。可以采用二分查找的方法。
- 找第k((m+n)/2)大的数。先在A,B中分别找第k/2大的数,如果A[k/2-1]等于B[k/2-1],那么这个数就是两个数组中第k大的数。如果A[k/2-1]<B[k/2-1],那么说明A[0]到A[k/2-1]都不可能是第k大的数,所以需要舍弃这k/2,继续从A[k/2]到A[A.length-1]继续找。当然,因为这里舍弃了A[0]到A[k/2-1]这k/2个数,那么第k大也就变成了第k-k/2个大的数了。如果 A[k/2-1]>B[k/2-1],那么说明B[0]到B[k/2-1]都不可能是第k大的数,舍弃这k/2。如此迭代或者递归操作,如果有一个数组为空了,则返回另一个数组的第k大(剩下需要二分长度)的数。如果k==1,只需返回此时所以数中排第一小的数,就返回此时A,B中第一个元素小的那个。代码如下:
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m=nums1.length;
int n=nums2.length;
int len=m+n;
//奇数查len+1
if(len%2==1){
return findKth(nums1,0,nums2,0,len/2+1);
}
//偶数查
return (findKth(nums1,0,nums2,0,len/2)+findKth(nums1,0,nums2,0,len/2+1))/2.0;
}
public static int findKth(int[] A, int A_start,
int[] B, int B_start,
int k){
//A_start>= A.length,说明第k个数不在数组A当中,所以要去数组B中去找
if (A_start >= A.length) {
return B[B_start + k - 1];
}
//B_start>= B.length,说明第k个数不在数组B当中,所以要去数组A中去找
if (B_start >= B.length) {
return A[A_start + k - 1];
}
if (k == 1) {
return Math.min(A[A_start], B[B_start]);
}
int A_key = A_start + k / 2 - 1 < A.length
? A[A_start + k / 2 - 1]
: Integer.MAX_VALUE;
int B_key = B_start + k / 2 - 1 < B.length
? B[B_start + k / 2 - 1]
: Integer.MAX_VALUE;
if (A_key < B_key) {
return findKth(A, A_start + k / 2, B, B_start, k - k / 2);
} else {
return findKth(A, A_start, B, B_start + k / 2, k - k / 2);
}
}
}