【CS106】编译原理笔记4 —— 用普遍性泵引理(Pumping lemma)证明语言的正则性

笔者:YY同学

生命不息,代码不止。好玩的项目尽在GitHub



语言正则性判断

什么是正则语言(Regular Language)?
简单来说,如果可以用 DFA、NFA 或者使用正规表达式来描述的语言就是正则语言。


那么问题来了,如何证明一种语言不是正则语言呢?
比如现在有一种语言 L L L ,满足
L = { a n b n , n > 0 } L=\{a^nb^n,n>0\} L={anbn,n>0}
那么 L L L 是不是正则语言呢,我们就不知道了,因为我们没有办法画出 DFA 和 NFA 或者写出 RE。可见上述证明的方法只是一个充分不必要条件。


提供一种尝试的思路 —— 反证法

我们以上述情形为例,我们假设 L L L 是正则语言,那么一定可以根据 L L L 画出相应的一个 DFA,由于 DFA 的 State 个数的有限性,我们假设该 DFA 含有 k k k 个描述字符 a a a 的 State,此时 我们取 n = k + 1 n=k+1 n=k+1 此时 w = a k + 1 b k + 1 w=a^{k+1}b^{k+1} w=ak+1bk+1 仍然会被 DFA 所接受。


由于 DFA 的单状态性导致每读取一个字符,State 就会往后跳一个。因此对于 k + 1 k+1 k+1 a a a 字符,只有 k k k 个 State,根据抽屉原理,一定存在一个 State 至少被访问 2 次,如图(接受第 i i i a a a 的 State 会被访问至少 2 次):


在这里插入图片描述


而此时 i < k i < k i<k,所以当 a a a 的个数达到 i i i 的时候开始读取 b b b 字符也会被整个 DFA 所接受。但是根据条件,当 a a a b b b 的个数不相等的时候,该字符集不属于 L L L 语言,因此不能被 DFA 所接受,从而产生了矛盾。


所以结论:之前的假设不成立,即 L L L 不是正则语言。


就这?

有了之前的思路,我们可以做进一步深入思考,将结论一般化:
我们假设正则语言 L L L 所生产的 DFA 个数为 n n n,那么当我们找到 L L L 语言的一个子表达 w w w 满足 ∣ w ∣ ≥ n |w|\geq n wn,即长度大于 n n n。而 State 只有 n n n 个,State 之间的连线只有 n − 1 n-1 n1 条。


根据抽屉原理,必然存在一个 State 被访问至少 2 次。我们把多次访问形成的环(Loop)记为 y y y,则 w w w 肯定可以被写成 w = x y z w=xyz w=xyz 的拼接形式,其中 ∣ x y ∣ ≤ n , ∣ y ∣ ≥ 1 |xy|\leq n,|y|\geq1 xyny1(总的 State 为 n n n 并且 环的长度至少为 1 )


我们知道环所在的部分是可以不执行或者执行多次的,因此 w = x y t z ( t ≥ 0 ) w=xy^tz (t\geq0) w=xytz(t0) 也应该被 L L L 语言的 DFA 所接受。


至此,我们有了普遍性的泵引理(Pumping Lemma)。


普遍性泵引理(Pumping Lemma)

假设 L ⊆ Σ ∗ L\subseteq\Sigma ^{*} LΣ 是正则语言,存在字符串 ∣ w ∣ ≥ n |w|\geq n wn(其中 n 为泵长度,可理解为正则语言等效的 DFA 的状态个数),如果可以将 w 写成 w = x y z w=xyz w=xyz 的形式时,以下说法成立:

  • ∣ x y ∣ ≤ n |xy|\leq n xyn
  • ∣ y ∣ ≥ 1 |y|\geq 1 y1
  • ∀ k ≥ 0 : x y k z ∈ L \forall k\geq 0:xy^{k}z\in L k0:xykzL

泵引理证明非正则语言实例

看一个例题:证明 L L L 不是正则语言
L = { a i b j c k , i + j > k } L=\{a^ib^jc^k,i+j>k\} L={aibjck,i+j>k}
我们的思路一般是先假设 L L L 是正则语言,然后通过反证法说明 L L L 与泵引理第三条矛盾从而证明 L L L 的非正则性。


我们取泵长度为 n = i + j n=i+j n=i+j,取 k = i + j − 1 k=i+j-1 k=i+j1,假设 L L L 是正则语言,显然子字符集 w = a i b j c i + j − 1 w=a^ib^jc^{i+j-1} w=aibjci+j1 会被 L L L 的 DFA 所接受。显然地, ∣ w ∣ ≥ n |w|\geq n wn,因此 w w w 一定可以被写成 w = x y z w=xyz w=xyz 的形式,且满足 ∣ x y ∣ ≤ n |xy|\leq n xyn ∣ y ∣ ≥ 1 |y|\geq 1 y1


但此时我们分析后会发现: a a a b b b 的字符总长度是大于等于泵长度 n n n ( i + j > = n ) (i+j>=n) (i+j>=n)。这意味着 n n n 个 DFA 中只有 n − 1 n-1 n1 条路经,根据抽屉原理,想要读完全部的 a a a b b b 必然会产生 loop(因为多一个字符),而多出的字符必然会进入 y y y 中,因此 y y y 中必然存在至少一个字符 a a a 或者字符 b b b。所以由泵引理第三条,当 k = 0 k = 0 k=0 的时候,理论上 w = x z w =xz w=xz 会被 DFA 所接受,但是事实上此时 ( a a a b b b 的字符总和 ) ≤ ( i + j − 1 ) = \leq (i+j-1) = (i+j1)= ( c c c 的字符总和 ),因此 w w w 不能被DFA所接受,这与泵引理第三条矛盾。


结论:所以原假设错误,即 L L L 不是正则语言。

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值