sklearn

1、sklearn.datasets.load_*()
获取小规模数据集,数据集包含在datasets里
ex_1:
sklearn.datasets.load_iris()返回鸢尾花的数据集
2、sklearn.datasets.fetch_*(data_home=None,subset='train/test/all')
获取大规模数据集,需要从网络上下载,传入的函数的第一个参数是data_home,表示数据集下载的目录,默认是~/scikit_learn_data/,第二个参数表示想要的数据集是训练集还是测试集,还是都要
3、数据集的返回值
load和fetch返回的是datasets.base.Bunch(继承自字典)
五个键:
data:数据集中的特值
target:数据集中的目标值
DESCR:数据集的描述
feature_names:特征的名字
target_names:目标值代表什么

	dict["key"] = values
    bunch.key = values

ex_2:

from sklearn.datasets import load_iris

def datasets_demo():

	'''
	sklearn数据集的使用
	'''
	iris = load_iris()
	print("鸢尾花数据集:\n", iris)

4、数据集划分
训练数据:用于训练,构建模型
划分比例:数据集20%~30%
数据集划分api

from sklearn.model_selection import train_test_split(arrays, *options)

x 数据集的特征值
y 数据集的标签值
test_size 测试集大小,一般为float,默认0.25
random_state 随机数种子
return 训练集特征值,测试集特征值,训练集目标值,测试集目标值

ex_3:

def datasets_demo():
    iris = load_iris()
    # print("鸢尾花数据集:\n", iris)
    # print("鸢尾花数据集描述:\n", iris["DESCR"])
    print("源数据:", iris.data.shape)
    # 数据集划分
    x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集特征值:", x_train,x_train.shape)
    return None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值