带你搞定c语言指针 1.初识指针

前言:在许多讨论之中,c语言指针似乎被大部分人吹的过分难了,实际指针并不困难,下面请随着我的脚步来学习吧

指针概念

        我们首先要搞懂内存是什么,被我们声明与初始化的变量都会被存在内存中,每个内存单位可以存储一个字节大小的内容,并且每个内存单位都有具体的编号,这个编号就被称为地址。 

int arr[]={3,2,1}

像上面这样子,我们创建了一个数组,数组内部有三个元素,因此系统就会在内存中开辟一段空间用来存储3,2,1(如图)

 我们将这个地址存储起来,这个变量就叫指针。怎么样,概念很简单吧。那么怎么写呢?

int a=1;
int *pa=&a;

如上所示,我们先初始化了一个变量a,那系统就会在内存中开辟一段空间来存放a,我们将那段空间编号(地址)存起来,就是一个指针了。

int *pa=&a;

而写法,pa旁边有*说明pa变量是一个指针变量,最左边存在int类型说明这个指针指向int,最右边&  读作取地址,顾名思义他就是取走了a的地址,那么一整句理解起来就是:pa是一个指针,它指向了一个int类型,而我们又取走了a的地址将它放在pa这个指针之中。这就是指针的初始化。

指针作用

       类比现实,我们可以通过地址找到一个人,而在c语言中我们可以通过地址找到对应变量。因此,我们规定使用符号*来访问地址对应的变量

(与上方不同,上方的*表示pa是一个指针)

int a=1;//初始化变量
int *pa=&a;//初始化一个指针
*pa=10;//解引用pa并将对应变量赋值

 *pa意思就是通过地址pa找到了a,即*pa=a

指针意义

       可能大家会很疑惑,我直接访问a和使用地址访问a有什么区别吗,搞这个指针不是多次一举吗?

       请记住,在这个例子中似乎没有什么区别,但设想一下我要使用一个数组,这个数组有10000个整形,那我把这个数组传参给一个函数时,每传一次就要传那么大的空间,这是非常浪费的,而我们可以把数组首元素地址传给这个函数,同时再传一个数组大小,那我们通过解引用的方式,来访问数组,通过数组大小来限制他的访问使他不超出数组范围,这样不就等价于传整个数组了吗,即1个指针参数加一个整形参数等于10000个整形,这个效率提升是多么大的啊!

上面是指针最基础的概念内容,文章还会继续更新,这是我第一次写教程,可能有许多语病,有许多讲不清楚的,可以评论留言,请各位积极指出,让我们共同进步!!

 

 

 

 

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值