spfa

spfa的算法思想(动态逼近法):
设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。
松弛操作的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式。所谓对结点i,j进行松弛,就是判定是否dis[j]>dis[i]+w[i,j],如果该式成立则将dis[j]减小到dis[i]+w[i,j],否则不动。
下面举一个实例来说明SFFA算法是怎样进行的:

和广搜bfs的区别:
SPFA 在形式上和广度(宽度)优先搜索非常类似,不同的是bfs中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本身被改进(重新入队),于是再次用来改进其它的点,这样反复迭代下去。

#include <stdio.h>
#include <queue>
using namespace std;
#define MAX 0x3f3f3f3f
int dp[101][101];
int dis[101];
int vis[101];
int n,m;
void spfa(int s)
{
    int i,t;
    for(i=1;i<=n;++i)
    {
        dis[i]=MAX;
        vis[i]=0;
    }

    dis[s]=0;
    queue <int> q;
    q.push(s);
    vis[s]=1;
    while(!q.empty())
    {
        t=q.front();
        q.pop();
        vis[t]=0;
        for(i=1;i<=n;i++)
        {
            if(dis[i]>dis[t]+dp[t][i])
            {
                dis[i]=dis[t]+dp[t][i];
                if(vis[i] == 0)
                {
                    q.push(i);
                    vis[i] =1;
                }
            }
        }
    }
}

int main()
{
    int i,j,A,B,C;
    while(scanf("%d%d",&n,&m) )
    {
        if( !n && !m )  break;
        for( i=1;i<=n;++i )
            for( j=1;j<=i;++j )
                if( i==j )  dp[i][j]=0;
                else    dp[i][j]=dp[j][i]=MAX;

        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&A,&B,&C);
            dp[A][B]=dp[B][A]=C;
        }
        spfa(1);
        printf("%d\n",dis[n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值