四类数据分析

描述性分析

  1. 定义
    • 以组成事件的关键环节为基础,通过设置合理的指标各环节进行量化,以达到还原事件的目的。同时可以根据科学的评价标准,发现事件发生过程中的异常。
  2. 分析目的
    1. 描述现实
      1. What-什么事件
      2. Who-谁参与的
      3. When-什么时候
      4. Where-在哪里
      5. Why-什么原因
      6. Result-结果是什么
    2. 发现问题—依据相应指标评判
      1. Good-好的结果?
      2. Bad-坏的结果?
  3. 应用
    • 监控现状

诊断性分析

没有找到具体原因的解决方案都是假方案

  1. 定义
    • 根据业务逻辑通过数据寻找引起最终结果的原因和可以改变未来结果的方法。
  2. 分析目的
    1. 解决问题
      • 坏的结果—产生问题的原因和解决方案
    2. 发现机会
      • 好的结果—在机会出现时发现机会
  3. 应用
    • 诊断问题

预测性分析

  1. 通过统计学、数据挖掘模型来对数据进行处理发现隐藏的信息预测分析对象的某些未知属性
  2. 分析目的
    1. 挖掘机会
      • 分类
        • 确定对象属于哪一预定义的目标类
        • 常见算法:SVM,逻辑回归
      • 聚类
        • 根据在数据中发现的描述对象的信息,将对象进行分组
        • 常见算法:K-Means
      • 关联分析
        • 发现隐藏在大型数据集中的有意义的联系,如啤酒与尿布
      • 离群点检测
        • 发现与其他对象不同的对象,如信用卡欺诈检测
  3. 应用
    • 预测未来

决策性分析

  1. 定义

    通过数据分析,挖掘确定事件的最佳执行时间,以实现增加收入、降低成本、提升效率、控制风险的目的。

  2. 分析目的—实现目标

    • 决策支持
      • 现状及目前存在的问题
      • 可以达成的最优目标
      • 达成目标的方案
      • 达成目标的收益和成本
      • 输出分析报告,给出分析结论
    • 决策系统
      • 优化方案系统化
      • 输出作业指令,指导作业
  3. 应用

    • 决策支持

    • 案例

      在巡视管理区域的时候你发现,门店的补货一直是门店经营的难题,
      补货数量过多,会造成库存积压,给仓库带来存储压力。r而补货数量过
      少,则销售有缺货的风险,影响销售。多个门店负责人向你抱怨补货不
      合理带来的种种问题。你下定决心要解决这个老大难的问题,可是应该
      怎么做呢?

    • 诊断分析

      • Q:怎样才算补货合理?

        既能保证正常的销售,又不会导致缺货,库存周转率在25天左右已经算业内非常好的库存管理水平了。

      • Q:如何才能保证库存周转率在25天?

        进货后商品的库存量满足25天的销量。

      • Q:怎么确定商品25天的销量是多少?

        通过对每个商品的发货量进行预测。

      • Q:怎么确定商品不发生缺货?

        系统下发补货指令,保证补货及时。

    • 通过机器学习实现:

      预测发货量
      判断是否低于安全库存
      计算满足未来发货需求的补货数量
      自动触发补货指令
      预测模型
      补货判断
      补货数量
      指令输出
      实现业务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值