题目大意
给你 n ( n ≤ 3 ∗ 1 0 5 ) n(n\le3*10^5) n(n≤3∗105)个数,每个数都 ≤ n \le n ≤n, 定义k-Amazing Numbers为大小为 k k k的滑窗遍历数组时,每次滑窗内的公共最小值,然后让输出k从1到n的所有k-Amazing Numbers
分析过程
这题的数字范围 ≤ n \le n ≤n,因此我们可以考虑从这里入手,枚举覆盖每个数字的最小滑窗大小。具体做法为:将每个数字对应的位置存下来,那么每个位置的最大间隔就是能够包含该数字的最小滑窗大小,我们定义 a n s [ k ] ans[k] ans[k]表示大小为 k k k的滑窗中的答案,那么其实最后每个滑窗大小 k k k对应的答案就是其 a n s [ k ] ans[k] ans[k]的最小前缀(大滑窗一定可以包含小滑窗)。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 100;
typedef long long ll;
vector<int> v[maxn];
int ans[maxn], a[maxn], n;
int main(){
int t, i, j;
ios::sync_with_stdio(false);
cin>>t;
while(t--){
cin>>n;
for(i=1;i<=n;++i) cin>>a[i];
for(i=1;i<=n;++i){
v[a[i]].push_back(i);
}
for(i=1;i<=n;++i) ans[i] = 1e7;
for(i=1;i<=n;++i){
if(v[i].empty()) continue;
int tmp = v[i][0];
for(j=1;j<v[i].size();++j){
tmp = max(tmp, v[i][j] - v[i][j - 1]);
}
tmp = max(tmp, n - v[i][j - 1] + 1);
if(ans[tmp] == 1e7) ans[tmp] = i;
}
for(i=2;i<=n;++i) ans[i] = min(ans[i - 1], ans[i]);
for(i=1;i<n;++i){
cout<<(ans[i]!=1e7?ans[i]:-1)<<' ';
}
cout<<(ans[i]!=1e7?ans[i]:-1)<<'\n';
for(i=1;i<=n;++i) v[i].clear();
}
return 0;
}