leetcode(3)无重复字符的最长子串

本文介绍了一种寻找字符串中最长无重复字符子串的算法实现。通过动态更新子串和记录子串长度,该算法能高效地找到满足条件的最长子串。适用于字符串处理和算法设计的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从字符串的第一个字符开始扫描,并用string x,x变量保存子串,当扫描到s[i]时,若s[i]不在子串x中,就把它加入子串,如果s[i]已经存在于x中,就更新子串。

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        if(s.empty())return 0;
        int cnt=0,maxx=1,q=0;//q为下一次子串开始的位置
        string xxx="";//用来存储子串
        for(int i=0;i<s.length();i++){
            char x=s[i];//逐个扫描字符
            if((xxx.find(x)>=0)&&(xxx.find(x)<s.length())){//如果当前字符已经在前面的子串当中
                int mp=xxx.find(x)+q;//先求出在子串中重复的字符在原字符串的位置
                q=mp+1;//记录下下一次子串开始的位置,为重复字符位置的下一个
                //q=mp+1;
                xxx=s.substr(q,i-mp);//更新的子串为重复字符的下一个位置的字符到s[i]
                if(cnt>maxx){
                    maxx=cnt;//更新最长子串的长度
                }
                cnt=i-mp;//cnt记录现在子串的长度
            }else{//如果不在字串中,就加入
                xxx+=x;
                cnt+=1;
            }
        }
        if(cnt>maxx)maxx=cnt;//一开始我忘记这个了,导致"au"这个样例没有过
        return maxx;
    }
};
### LeetCode &#39;无重复字符长子&#39; 的 Python 实现 此问题的目标是从给定字符中找到不包含任何重复字符的长子长度。以下是基于滑动窗口算法的一种高效解决方案。 #### 方法概述 通过维护一个动态窗口来跟踪当前无重复字符的子范围,可以有效地解决该问题。具体来说,利用哈希表记录每个字符近一次出现的位置,并调整窗口左边界以排除重复项。 #### 代码实现 以下是一个标准的 Python 解决方案: ```python def lengthOfLongestSubstring(s: str) -> int: char_index_map = {} # 存储字符及其新索引位置 max_length = 0 # 记录大子长度 start = 0 # 当前窗口起始位置 for i, char in enumerate(s): # 遍历字符 if char in char_index_map and char_index_map[char] >= start: # 如果发现重复字符,则更新窗口起点 start = char_index_map[char] + 1 char_index_map[char] = i # 更新或新增字符对应的索引 current_length = i - start + 1 # 当前窗口大小 max_length = max(max_length, current_length) # 更新大长度 return max_length ``` 上述代码的核心逻辑在于使用 `char_index_map` 来存储已访问过的字符以及它们后出现的位置[^1]。当遇到重复字符时,重新计算窗口的起始点并继续扩展窗口直到遍历结束[^2]。 对于输入 `"abcabcbb"`,执行过程如下: - 初始状态:`start=0`, `max_length=0` - 处理到第3个字符 `&#39;c&#39;` 之前未检测到重复,此时 `max_length=3` - 发现有重复字符 `&#39;a&#39;` 后移动窗口左侧至新位置,终返回结果为 `3`. 同样地,在处理像 `"bbbbb"` 这样的极端情况时也能正确得出答案为 `1`[^4]. #### 时间复杂度与空间复杂度分析 时间复杂度 O(n),其中 n 是字符长度;因为每个字符多被访问两次——加入和移除窗口各一次。 空间复杂度 O(min(m,n)) ,m 表示 ASCII 字符集大小 (通常固定为128), 而 n 取决于实际输入字符长度[^5]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值