代码随想录算法训练营第三十一天| 理论基础,455.分发饼干, 376. 摆动序列,53. 最大子序和

文章介绍了利用贪心算法解决LeetCode中的三个问题:分发饼干(分配饼干给孩子),找出摆动序列(波峰波谷计算),以及最大子序和(连续和优化)。作者分享了解题思路、代码实现及遇到的困难,强调贪心算法在寻找局部最优以达成全局最优的应用。
摘要由CSDN通过智能技术生成

 题目与题解

参考资料:贪心算法理论基础

455.分发饼干

题目链接:455.分发饼干

代码随想录题解:455.分发饼干

视频讲解:贪心算法,你想先喂哪个小孩?| LeetCode:455.分发饼干_哔哩哔哩_bilibili

解题思路:

        先对小孩胃口g和饼干分量s进行排序,然后对于小孩的胃口,从小到大分配饼干。如果当前饼干不能满足当前小孩胃口,就继续看下一个饼干是否能满足,否则已满足胃口的小孩数量加一,继续看下一个饼干能否满足下一个小孩的胃口。

class Solution {
    public int findContentChildren(int[] g, int[] s) {
		int max = 0;
		Arrays.sort(g);
		Arrays.sort(s);
		int i = 0, j = 0;
		while (i < g.length && j < s.length) {
			if (s[j] >= g[i]) {
				max++;
				i++;
				j++;
			} else {
				j++;
			}
		}
		return max;
    }
}

看完代码随想录之后的想法 

        这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。也可以换一个思路,小饼干先喂饱小胃口,也就是我写的思路。

class Solution {
    // 思路2:优先考虑胃口,先喂饱大胃口
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int count = 0;
        int start = s.length - 1;
        // 遍历胃口
        for (int index = g.length - 1; index >= 0; index--) {
            if(start >= 0 && g[index] <= s[start]) {
                start--;
                count++;
            }
        }
        return count;
    }
}

遇到的困难

        说实话感觉写的时候是瞎写的竟然也能过,非常迷茫。。贪心确实没什么套路。

376. 摆动序列

题目链接:376. 摆动序列

代码随想录题解:376. 摆动序列

视频讲解:贪心算法,寻找摆动有细节!| LeetCode:376.摆动序列_哔哩哔哩_bilibili

解题思路:

        有些复杂,写不对,看答案

看完代码随想录之后的想法 

        这题的本质是求有多少个波峰和波谷,峰谷之间的元素都可以忽略。所以只要当前元素跟前后元素之差一正一负,说明该元素就是波峰或者波谷元素,统计即可。        

但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡
class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            //得到当前差值
            curDiff = nums[i] - nums[i - 1];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

遇到的困难

        要把这道题抽象成波峰波谷的计算就很难了,实在是写不出来,就看看吧。

53. 最大子序和

题目链接:53. 最大子序和

代码随想录题解:53. 最大子序和

视频讲解:贪心算法的巧妙需要慢慢体会!LeetCode:53. 最大子序和_哔哩哔哩_bilibili

解题思路:

        无

看完代码随想录之后的想法 

        局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

        全局最优:选取最大“连续和”

计算过程中sum会不断更新,所以要用result实时记录最大的序列和,最后输出result即可。这样写,即使所有的sum都小于0,最后得到的也一定是数组中最大的数,即最靠近0的负数。

class Solution {
    public int maxSubArray(int[] nums) {
		int sum = 0;
		int result = Integer.MIN_VALUE;
		for (int i = 0; i < nums.length; i++) {
			sum += nums[i];
			if (sum > result) result = sum;
			if (sum <= 0) sum = 0;
		}
		return result;
    }
}

遇到的困难

        真的想不到,摆了

今日收获

        贪心很难,一是难在想到题目要用贪心算法,二是难在不知道如何找局部最优以获得全局最优。暂时只能靠记了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值