题目与题解
参考资料:贪心算法理论基础
455.分发饼干
题目链接:455.分发饼干
代码随想录题解:455.分发饼干
解题思路:
先对小孩胃口g和饼干分量s进行排序,然后对于小孩的胃口,从小到大分配饼干。如果当前饼干不能满足当前小孩胃口,就继续看下一个饼干是否能满足,否则已满足胃口的小孩数量加一,继续看下一个饼干能否满足下一个小孩的胃口。
class Solution {
public int findContentChildren(int[] g, int[] s) {
int max = 0;
Arrays.sort(g);
Arrays.sort(s);
int i = 0, j = 0;
while (i < g.length && j < s.length) {
if (s[j] >= g[i]) {
max++;
i++;
j++;
} else {
j++;
}
}
return max;
}
}
看完代码随想录之后的想法
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。也可以换一个思路,小饼干先喂饱小胃口,也就是我写的思路。
class Solution {
// 思路2:优先考虑胃口,先喂饱大胃口
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int count = 0;
int start = s.length - 1;
// 遍历胃口
for (int index = g.length - 1; index >= 0; index--) {
if(start >= 0 && g[index] <= s[start]) {
start--;
count++;
}
}
return count;
}
}
遇到的困难
说实话感觉写的时候是瞎写的竟然也能过,非常迷茫。。贪心确实没什么套路。
376. 摆动序列
题目链接:376. 摆动序列
代码随想录题解:376. 摆动序列
解题思路:
有些复杂,写不对,看答案
看完代码随想录之后的想法
这题的本质是求有多少个波峰和波谷,峰谷之间的元素都可以忽略。所以只要当前元素跟前后元素之差一正一负,说明该元素就是波峰或者波谷元素,统计即可。
但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
class Solution {
public int wiggleMaxLength(int[] nums) {
if (nums.length <= 1) {
return nums.length;
}
//当前差值
int curDiff = 0;
//上一个差值
int preDiff = 0;
int count = 1;
for (int i = 1; i < nums.length; i++) {
//得到当前差值
curDiff = nums[i] - nums[i - 1];
//如果当前差值和上一个差值为一正一负
//等于0的情况表示初始时的preDiff
if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
count++;
preDiff = curDiff;
}
}
return count;
}
}
遇到的困难
要把这道题抽象成波峰波谷的计算就很难了,实在是写不出来,就看看吧。
53. 最大子序和
题目链接:53. 最大子序和
代码随想录题解:53. 最大子序和
解题思路:
无
看完代码随想录之后的想法
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
计算过程中sum会不断更新,所以要用result实时记录最大的序列和,最后输出result即可。这样写,即使所有的sum都小于0,最后得到的也一定是数组中最大的数,即最靠近0的负数。
class Solution {
public int maxSubArray(int[] nums) {
int sum = 0;
int result = Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (sum > result) result = sum;
if (sum <= 0) sum = 0;
}
return result;
}
}
遇到的困难
真的想不到,摆了
今日收获
贪心很难,一是难在想到题目要用贪心算法,二是难在不知道如何找局部最优以获得全局最优。暂时只能靠记了。