AI Agent、Function Calling 与 MCP 协议的原理与实践

AI Agent、Function Calling 与 MCP 协议的原理与实践

引言

随着大语言模型(LLM, Large Language Model)能力的不断提升,AI Agent(智能体)逐渐成为人工智能领域的热门方向。AI Agent 不仅能理解和生成自然语言,还能自主调用外部工具、管理复杂任务流程,极大地拓展了大模型的应用边界。在实现这些能力的过程中,Function Calling(函数调用)和 MCP(多步/多模态控制协议)是两个核心技术点。本文将系统介绍这三者的原理、区别与联系,并结合实际代码案例,帮助开发者理解如何构建强大的 AI Agent 系统。


一、AI Agent 概述

AI Agent 是指具备自主决策能力、能够与环境交互并完成复杂任务的智能体。与传统的对话机器人不同,AI Agent 不仅能与用户对话,还能根据任务需求自动调用外部工具(如搜索、计算、绘图、文件处理等),甚至能进行多步推理和任务规划。

AI Agent 的核心能力包括:

  • 自然语言理解与生成:理解用户意图,生成合理回复。
  • 工具调用:根据需求调用外部 API 或本地函数。
  • 多轮对话与上下文管理:记住历史对话,持续跟进任务。
  • 任务规划与执行:将复杂任务拆解为多个步骤,逐步完成。

二、Function Calling(函数调用)

Function Calling 是指大模型在对话过程中,根据用户请求自动调用外部函数或工具,并将结果返回给用户。它是 AI Agent 的基础能力之一。

1. 原理

以 OpenAI 的 Function Calling 为例,开发者可以向模型注册一组函数(工具),并描述每个函数的用途和参数。当用户提出请求时,模型会判断是否需要调用某个函数,并自动生成调用参数。调用结果返回后,模型会将其纳入后续对话。

2. 典型流程

  1. 用户输入请求(如“帮我查一下明天北京的天气”)。
  2. LLM 判断需要调用 get_weather 工具,并自动生成参数(如 city=北京, date=明天)。
  3. 系统调用外部函数,获取结果。
  4. LLM 根据结果生成自然语言回复。

3. 代码示例

以 Qwen-Agent 为例,注册一个自定义工具:

# ...existing code...
@register_tool('my_image_gen')
class MyImageGen(BaseTool):
    description = 'AI 绘画(图像生成)服务&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_梓杰_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值