AI Agent、Function Calling 与 MCP 协议的原理与实践
引言
随着大语言模型(LLM, Large Language Model)能力的不断提升,AI Agent(智能体)逐渐成为人工智能领域的热门方向。AI Agent 不仅能理解和生成自然语言,还能自主调用外部工具、管理复杂任务流程,极大地拓展了大模型的应用边界。在实现这些能力的过程中,Function Calling(函数调用)和 MCP(多步/多模态控制协议)是两个核心技术点。本文将系统介绍这三者的原理、区别与联系,并结合实际代码案例,帮助开发者理解如何构建强大的 AI Agent 系统。
一、AI Agent 概述
AI Agent 是指具备自主决策能力、能够与环境交互并完成复杂任务的智能体。与传统的对话机器人不同,AI Agent 不仅能与用户对话,还能根据任务需求自动调用外部工具(如搜索、计算、绘图、文件处理等),甚至能进行多步推理和任务规划。
AI Agent 的核心能力包括:
- 自然语言理解与生成:理解用户意图,生成合理回复。
- 工具调用:根据需求调用外部 API 或本地函数。
- 多轮对话与上下文管理:记住历史对话,持续跟进任务。
- 任务规划与执行:将复杂任务拆解为多个步骤,逐步完成。
二、Function Calling(函数调用)
Function Calling 是指大模型在对话过程中,根据用户请求自动调用外部函数或工具,并将结果返回给用户。它是 AI Agent 的基础能力之一。
1. 原理
以 OpenAI 的 Function Calling 为例,开发者可以向模型注册一组函数(工具),并描述每个函数的用途和参数。当用户提出请求时,模型会判断是否需要调用某个函数,并自动生成调用参数。调用结果返回后,模型会将其纳入后续对话。
2. 典型流程
- 用户输入请求(如“帮我查一下明天北京的天气”)。
- LLM 判断需要调用
get_weather
工具,并自动生成参数(如city=北京, date=明天
)。 - 系统调用外部函数,获取结果。
- LLM 根据结果生成自然语言回复。
3. 代码示例
以 Qwen-Agent 为例,注册一个自定义工具:
# ...existing code...
@register_tool('my_image_gen')
class MyImageGen(BaseTool):
description = 'AI 绘画(图像生成)服务&#