语义通信资源分配文献阅读:面向语义感知通信网络的多维资源优化


论文简介

  • 作者
    秦志金 冀泽霖 严蕾 陶晓明
  • 发表期刊or会议
    《移动通信》
  • 发表时间
    2023.4

多维资源优化模型构建

针对语义感知网络中多任务多模态共存的需求,网络性能优化问题可以建模如下:
在这里插入图片描述


该模型的优化变量、 优化目标、约束条件之间的关系如图所示:
要确定 合适的评价指标
在这里插入图片描述
具体表述见 论文2.1


边缘计算

  • 定义:
    边缘计算技术为计算能力较差的设备提供了一种解决方案,即本地用户可以将计算任务卸载到边缘服务器上,由计算能力强大的边缘服务器来执行这些任务。

  • 语义通信中的任务卸载
    语义感知的任务卸载系统可以将本地任务的高计算负载转换为低通信负载的语义信息,并将其卸载到具有低计算负载的边缘服务器上 (从端侧到边缘或云,传输的是语义信息)。语义任务卸载过程包括如下的几个步骤:
    ①本地用户利用语义编码器提取任务中包含的语义信息
    ②本地用户上传语义任务到边缘服务器
    ③边缘服务器通过语义解码器解码任务信息并执行任务
    ④本地用户从边缘服务器下载任务执行结果

在这里插入图片描述


强化学习与联邦学习

  当信道状态信息已知且时延容忍度较高时,上述构建的资源优化问题可以通过将多维资源优化问题解耦成多个子问题,再通过传统的凸优化算法匹配算法等求解。然而,语义感知网络中存在多种面向不同任务的语义通信系统,因而需要满足多样的语义通信性能需求、无线资源需求以及计算资源需求,造成算法计算复杂度过高,无法满足低时延等场景下的用户需求。此种场景下,可以利用强化学习的思想对多维资源联合分配问题进行求解,通过联邦学习进行分布式训练,减小通信开销以及训练复杂度。这样,神经网络训练在线下进行,而线上仅需要进行有限次的浮点数计算,即可得到资源分配结果,可显著降低算法复杂度。
  强化学习驱动的多维资源优化:由于优化变量较多且同时存在离散变量和连续性变量,在设计强化学习算法时,可以利用基于值函数的方法,对信道选择等离散变量进行优化,利用基于策略梯度的方法对功率等连续变量进行优化,从而减小动作空间的大小,降低神经网络训练的内存需求,提高收敛速度。每次训练中,基于这两个神经网络输出的结果,计算此次训练的回报,并通过梯度回传对神经网络进行优化,直至网络收敛,得到最优参数配置。
  联邦学习驱动的低复杂度资源优化算法:当网络中用户数增加,采用集中式资源分配算法需重新设计神经网络结构,重新训练,以满足所有设备的资源分配需求,训练复杂度会显著增加。为解决这一问题,可以采用联邦学习的思想进行分布式训练。网络中的用户在本地进行计算能力内的小规模训练,将训练参数上传至中心服务器进行加权计算,再广播至各个网络中的用户,当由新用户加入时,仅需要进行几个训练周期的调整,便可为其分配合适的资源,满足其通信需求。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值