一、HDFS概念
HDFS (Hadoop Distributed File System)
指适合运行在通用硬件上的分布式文件系统
二、HDFS特点和特性
现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。
1. 高容错性
适合部署在廉价的机器上
2. 高吞吐量
为大量数据访问的应用提供高吞吐量支持
3. 大文件存储
支持存储TB-PB级别的数据
HDFS适用于大文件存储、流式数据访问,适合那些有着超大数据集(large data set)的应用程序;不适合大量小文件、随机写入、低延迟读取
- 数据访问。运行在HDFS之上的应用程序必须流式地访问它们的数据集,它不是运行在普通文件系统之上的普通程序。HDFS被设计成适合批量处理的,而不是用户交互式的。重点是在数据吞吐量,而不是数据访问的反应时间 。
- 简单一致性模型。大部分的HDFS程序对文件操作需要的是一次写多次读取的操作模式。一个文件一旦创建、写入、关闭之后就不需要修改了。这个假定简单化了数据一致的问题,并使高吞吐量的数据访问变得可能。一个Map-Reduce程序或者网络爬虫程序都可以完美地适合这个模型。
三、体系结构
- HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。
- 其中NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作。
- DataNode管理存储的数据。DataNodes作为从机,每台机器位于一个集群中,并提供实际的存储. 它负责为客户读写请求服务。
如图为基本系统架构:
NameNode:NameNode用于存储、生成文件系统的元数据。运行一个实例。
DataNode:DataNode用于存储实际的数据,将自己管理的数据块上报给NameNode ,运行多个实例。
Client:支持业务访问HDFS, 从NameNode ,DataNode获取数据返回给业务。多个实例,和业务一起运行。
- HDFS中的读/写操作运行在块级。HDFS数据文件被分成块大小的块,这是作为独立的单元存储。默认块大小为64 MB。
- HDFS操作上是数据复制的概念,其中在数据块的多个副本被创建,分布在整个节点的群集以使在节点故障的情况下数据的高可用性。
注:在HDFS的文件,比单个块小,不占用块的全部存储。
四、HDFS读写操作
HDFS数据读取流程
HDFS数据读取流程如下:
- 业务应用调用HDFS Client提供的API打开文件。
- HDFS Client联系NameNode,获取到文件信息(数据块、DataNode位置信息)。
- 业务应用调用read API读取文件。
- HDFS Client根据从NameNode获取到的信息,联系DataNode,获取相应的数据块。(Client采用就近原则读取数据)。
- HDFS Client会与多个DataNode通讯获取数据块。
- 数据读取完成后,业务调用close关闭连接。
HDFS数据写入流程
- 业务应用调用HDFS Client提供的API创建文件,请求写入。
- HDFS Client联系NameNode,NameNode在元数据中创建文件节点。
- 业务应用调用write API写入文件。
HDFS Client收到业务数据后,从NameNode获取到数据块编号、位置信息后,联系DataNode,并将需要写入数据的DataNode建立起流水线,完成后,客户端再通过自有协议写入数据到DataNode1,再由DataNode1复制到DataNode2, DataNode3。 - 写完的数据,将返回确认信息给HDFS Client。
- 所有数据确认完成后,业务调用HDFS Client关闭文件。
- 业务调用close,flush后HDFS Client联系NameNode,确认数据写完成,NameNode持久化元数据。