格式转换:从十进制到K进制

本文介绍了数位、基数和位权的概念,并详细讲解了从十进制转换到K进制的示例和原理,包括整数除K倒取余和小数乘K顺取整的方法。通过具体例子展示了十进制转二进制、八进制和十六进制的过程。
摘要由CSDN通过智能技术生成

在开始之前...

  • 在开始学习转换进制之前,有必要明确三个概念:

    • 数位:一个数中每个数码所占的位置

    • 基数:每个数位能使用数码的个数

    • 位权:每个位上数码代表数值大小

  • eg. (135.672)10

    = 1 x 102 + 3 x 101 + 5 x 100 + 6 x 10-1 + 7 x 10-2 + 2 x 10-3

    在此数中,整数部分有三个数位(三位整数),小数部分有三个数位(三位小数);

    基数为 10 ,所使用十个数码分别为 0 1 2 3 4 5 6 7 8 9 ;

    对于个位,其位权为 100 ;

    其他位位权依此类推 。

  • eg. (207.53)8

    = 2 x 82 + 0 x 81 + 7 x 80 + 5 x 8-1 + 3 x 8-2

    在此数中,整数部分有三个数位(三位整数),小数部分有两个数位(两位小数);

    基数为 8 ,所使用八个数码分别为 0 1 2 3 4 5 6 7 ;

    对于个位,其位权为 80 ;

    其他位位权依此类推 。


十进制转为K进制(示例)

整数除K倒取余

小数乘K顺取整

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值