合并石子(3种算法)【DP】

本文介绍了合并石子问题,即求解将一行石子合并在一起的最小花费值。通过动态规划方法,包括三种不同的状态转移方程来解决此问题,并提供了样例输入输出及解题思路。
摘要由CSDN通过智能技术生成

> Description
合并石子:就是一行石子,相邻的两堆可以合并在一起,所花费的值就是合并的总量数,直到把全部合并在一起。求最小花费值。
在这里插入图片描述
如图,方案一代价:10+9+19=38,方案二代价:5+11+19=35


> Input
第一行为n,接下来n行为第n-1个石子的重量。

> Output
输出最优值。


> Sample Input
7
13
7
8
16
21
4
18


> Sample Output
239


> 解题思路
s[i]为第i个的前缀和。

方法一:
先枚举边界,再枚举长度。f[i][j]为第i个到第j个的最优值。i和j枚举从i开始到j,k枚举i到j如何划分。
状态转移方程:

f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1]

方法二:
先枚举长度,再枚举边界。f[i][j]的作用和方法一的一样。len枚举长度,i和j枚举从i开始到j,k还是枚举如何划分。
状态转移方程:

f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1]

方法三:
先枚举长度,再枚举边界。f[i][j]表示从i开始数j个数这一段距离的最优值。j枚举长度,i枚举开始位置,k枚举如何划分。
状态转移方程:

f[i][j]=f[i][k]+f[i+k][j-k]+s[i+j-1]-s[i-1]

> 代码
方法一:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,s[101]={
   0},f[101][101];
int main()
{
   
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
   
		scanf("%d",&s[i]); s[i]+=s[i-1];
	}
	for(int i=n-1;i>=1;i--
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值