> Description
合并石子:就是一行石子,相邻的两堆可以合并在一起,所花费的值就是合并的总量数,直到把全部合并在一起。求最小花费值。
如图,方案一代价:10+9+19=38,方案二代价:5+11+19=35
> Input
第一行为n,接下来n行为第n-1个石子的重量。
> Output
输出最优值。
> Sample Input
7
13
7
8
16
21
4
18
> Sample Output
239
> 解题思路
s[i]为第i个的前缀和。
方法一:
先枚举边界,再枚举长度。f[i][j]为第i个到第j个的最优值。i和j枚举从i开始到j,k枚举i到j如何划分。
状态转移方程:
f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1]
方法二:
先枚举长度,再枚举边界。f[i][j]的作用和方法一的一样。len枚举长度,i和j枚举从i开始到j,k还是枚举如何划分。
状态转移方程:
f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1]
方法三:
先枚举长度,再枚举边界。f[i][j]表示从i开始数j个数这一段距离的最优值。j枚举长度,i枚举开始位置,k枚举如何划分。
状态转移方程:
f[i][j]=f[i][k]+f[i+k][j-k]+s[i+j-1]-s[i-1]
> 代码
方法一:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,s[101]={
0},f[101][101];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i]); s[i]+=s[i-1];
}
for(int i=n-1;i>=1;i--