>Description
有一个演讲大厅需要GEORGE管理,演讲者们事先定好了需要演讲的起始时间和中止时间。GEORGE想让演讲大厅得到最大可能的使用。我们要接受一些预定而拒绝其他的预定,目标自然是使演讲者使用大厅的时间最长。为方便起见,假设在某一时刻一个演讲结束,另一个演讲就可以立即开始。
计算演讲大厅最大可能的使用时间。
>Input
第一行为一个整数n,n <= 100,表示申请的数目。
>Output
一个整数,表示大厅最大可能的使用时间。
>Sample Input
12
1 2
3 5
0 4
6 8
7 13
4 6
9 10
9 12
11 14
15 19
14 16
18 20
>Sample Output
16
>解题思路
f[i]表示前i个演讲者可以花费的最长时间,前提是必须接受了第i个演讲者的预定。所以最后输出时不一定是输出f[n],还需要判断出f[1~n]中最大的数。
状态转移方程:
f[i]=max(f[i],f[j]+time[i]);
由于不能同时演讲,所以要进行判断(还要排序)。
>代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct ooo
{
int t,s; //t是开始时间,s是结束时间
}a<