>Description
这里有随意两个城市都是直接连通的,其中A国有N个城市,B国有M个城市,并且n>=m。
A国的每一个城市都有一个可以直接摧毁一个城市的导弹。请你算出A国要摧毁B国所有城市至少需要的时间是多少。
>Input
输入第一行为一个整数K(2<=K<=100),为顶点数。接下来有一个K*K的矩阵,类似邻接矩阵。matrix[i][j]表示城市i到城市j的距离,这也是导弹由城市i到城市j间的飞行时间。这里有:matrix[i][j]=matrix[j][i],matrix[i][i]=0,1<=matrix[i][j]<=100。
接下来一行为整数N,1<=N<=K,为A国的城市数。下面一行N个整数,列出A国管辖的城市编号。
再下来一行为整数M,1<=M<=N,为B国的城市数。下面一行M个整数,列出B国管辖的城市编号。
A国与B国管辖的所有城市编号均不相同。
>Output
输出文件只有一行,为导弹摧毁B国所有城市至少所需要的时间。
>Sample Input
3
0 2 1
2 0 10
1 10 0
1
2
1
3
>Sample Output
3
>解题思路
一开始拿了60多分是因为真不知道floyed后面怎么搞,但是我们又新学了一个算法——匈牙利算法,就好些多了。还要加上二分。
>代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,a[105],b[105],ans,l,r,mid;
int k,f[105][105];
int g[105],yd[105][105]; bool lhq[105];
bool yali(int s)
{
for(int i=1;i<=yd[s][0];i++) //循环与s(b[i])所连接的所有点
if(!lhq[yd[s][i]]) //如果这一点没有被访问过(如果访问过就说明试图连接过但并没有连接上,所以就不用多此一举了)
{
lhq[yd[s][i]]=1; //标记已被访问
if(!g[yd[s][i]]||yali(g[yd[s][i]])) //此点还没有被连接上,或者如果连接上了,看看连接这一个点的点还能不能去连接其他的点(让s来连接这一个点)
{
g[yd[s][i]]=s;
return 1; //已连接上就直接返回true
}
}
return 0;
} //匈牙利算法
bool ooo()
{
memset(yd,0,sizeof(yd)); //yd记录路径
memset(g,0,sizeof(g)); //g记录某一点是否已确定连接其他点
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
if(f[b[i]][a[j]]<=mid) //如果这两点符合要求
{
yd[b[i]][++yd[b[i]][0]]=a[j];
yd[a[j]][++yd[a[j]][0]]=b[i]; //记录两点
}
for(int i=1;i<=m;i++)
{
memset(lhq,0,sizeof(lhq)); //lhq记录某一点是否已被访问过
if(!yali(b[i])) return 0; //如果这一个B城市没有可连接的A城市,就返回false
}
return 1;
}
int main()
{
memset(f,0x7f,sizeof(f));
scanf("%d",&k);
for(int i=1;i<=k;i++)
for(int j=1;j<=k;j++)
scanf("%d",&f[i][j]);
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++)
scanf("%d",&b[i]); //以上为一堆输入
for(int t=1;t<=k;t++)
for(int i=1;i<=k;i++)
for(int j=1;j<=k;j++)
{
if(i!=j&&j!=t&&t!=i)
f[i][j]=min(f[i][j],f[i][t]+f[t][j]); //floyed
r=max(r,f[i][j]); //r为不管怎么样的最长的用时
}
while(l<=r)
{
mid=(l+r)/2; //中间数mid
if(ooo()) //如果在范围为mid的情况下,各个B城市都有分别可以连接上的A城市
{
ans=mid; //记下mid
r=mid-1; //继续缩小范围
}
else l=mid+1; //不然扩大范围
}
printf("%d",ans);
return 0;
}