>Description
在一个平面上有n个矩形。每个矩形的边都平行于坐标轴并且都具有值为整数的顶点。我们用如下的方式来定义块。
每一个矩形都是一个块。
如果两个不同的矩形有公共线段,那么它们就组成了一个新的块来覆盖它们原来的两个块。
例子:
在图1中的矩形组成了两个不同的块。
写一个程序:
读入矩形的个数以及它们的顶点。
找出这些矩形形成的不同的块的个数。
>Input
在输入文件PRO.IN的第一行又一个整数n,1 <= n <=7000,表示矩形的个数。接下来的n行描述矩形的顶点,每个矩形用四个数来描述:左下顶点坐标(x,y)与右上顶点坐标(x,y)。每个矩形的坐标都是不超过10000的非负整数。
>Output
在文件PRO.OUT的第一行应当仅有一个整数—表示由给定矩形组成的不同的块的个数。
>Sample Input
9
0 3 2 6
4 5 5 7
4 2 6 4
2 0 3 2
5 3 6 4
3 2 5 3
1 4 4 7
0 0 1 4
0 0 4 1
>Sample Output
2
>解题思路
使用并查集:记录下每个矩阵的顶点,判断每两个矩阵是否重叠,如果重叠就将两个矩阵的序号合并(并查集),最后找出一共有多少个集合。
>代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,li,sa,ans,x[7005],y[7005],xx[7005],yy[7005],f[7005];
bool ooo(int i,int j)
{
if((xx[i]==x[j]||x[i]==xx[j])&&(y[i]==yy[j]||yy[i]==y[j])) return 0; //只有一个重叠的点的话不算重叠
if(x[i]<=xx[j]&&xx[i]>=x[j]&&y[i]<=yy[j]&&yy[i]>=y[j]) return 1; //判断图形重叠
return 0;
}
int lil(int s)
{
if(f[s]==s) return s;
return f[s]=lil(f[s]);
} //并查集
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d%d%d",&x[i],&y[i],&xx[i],&yy[i]),f[i]=i;
for(int i=1;i<n;i++)
for(int j=i+1;j<=n;j++)
if(ooo(i,j)) //判断是否重叠
{
li=lil(i); sa=lil(j);
if(li<sa) f[sa]=li;
else f[li]=sa; //按秩排序
}
for(int i=1;i<=n;i++)
if(f[i]==i) ans++;
printf("%d",ans);
return 0;
}