马尔萨斯人口模型
设时刻 t t t时人口为 x ( t ) x(t) x(t),单位时间内人口增长率为 r r r,则 Δ t \Delta t Δt时间内增长人口为:
x t + ∆ t − x t = x t ⋅ r ⋅ Δ t xt+∆t-xt=xt\cdot r\cdot \Delta t xt+∆t−xt=xt⋅r⋅Δt
当 Δ t → 0 \Delta t→0 Δt→0,得到微分方程:
d x d t = r x 且 x ( 0 ) = x 0 \frac{dx}{dt}=rx且x(0)=x_0 dtdx=rx且x(0)=x0
则: x ( t ) = x 0 ⋅ e r t x\left(t\right)=x_0\cdot e^{rt} x(t)=x0⋅ert,且待求参数为 x 0 x_0 x0, r r r。为了便于求解,两边取对数,则有:
y = a + r t y=a+rt y=a+rt
其中, y = ln x y=\ln{x} y=lnx, a = ln x 0 a=\ln{x_0} a=lnx0。
此时,该模型可以简化为线性函数的求解。
阻滞型人口模型
设时刻t时的人口为 x ( t ) x(t) x(t),环境允许的最大人口数量为 x m x_m xm,人口净增长率随人口数量的增加而线下减少,即:
r ( t ) = r ⋅ ( 1 − x x m ) r\left(t\right)=r\cdot\left(1-\frac{x}{x_m}\right) r(t)=r⋅(1−xmx)
由此建立阻滞型人口微分方程:
d x d t = r ⋅ ( 1 − x x m ) 且 x ( 0 ) = x 0 \frac{dx}{dt}=r\cdot\left(1-\frac{x}{x_m}\right)且x(0)=x_0 dtdx=r⋅(1−xmx)且x(0)=x0
则,解微分方程可以得到下式:
x ( t ) = x m 1 + ( x m x 0 − 1 ) ⋅ e − r t x\left(t\right)=\frac{x_m}{1+\left(\frac{x_m}{x_0}-1\right)\cdot e^{-rt}} x(t)=1+(x0xm−1)⋅e−rtxm
且,待求参数 x 0 x_0 x0, x m x_m xm, r r r;
此即为Logistic函数。
当 x = x m 2 x=\frac{x_m}{2} x=2xm时, x x x增长最快,即 d x d t \frac{dx}{dt} dtdx最大。