【数学建模】LOGISTIC模型

马尔萨斯人口模型

设时刻 t t t时人口为 x ( t ) x(t) x(t),单位时间内人口增长率为 r r r,则 Δ t \Delta t Δt时间内增长人口为:

x t + ∆ t − x t = x t ⋅ r ⋅ Δ t xt+∆t-xt=xt\cdot r\cdot \Delta t xt+txt=xtrΔt

Δ t → 0 \Delta t→0 Δt0,得到微分方程:

d x d t = r x 且 x ( 0 ) = x 0 \frac{dx}{dt}=rx且x(0)=x_0 dtdx=rxx(0)=x0

则: x ( t ) = x 0 ⋅ e r t x\left(t\right)=x_0\cdot e^{rt} x(t)=x0ert,且待求参数为 x 0 x_0 x0 r r r。为了便于求解,两边取对数,则有:

y = a + r t y=a+rt y=a+rt

其中, y = ln ⁡ x y=\ln{x} y=lnx a = ln ⁡ x 0 a=\ln{x_0} a=lnx0

此时,该模型可以简化为线性函数的求解。

阻滞型人口模型

设时刻t时的人口为 x ( t ) x(t) x(t),环境允许的最大人口数量为 x m x_m xm,人口净增长率随人口数量的增加而线下减少,即:

r ( t ) = r ⋅ ( 1 − x x m ) r\left(t\right)=r\cdot\left(1-\frac{x}{x_m}\right) r(t)=r(1xmx)

由此建立阻滞型人口微分方程:

d x d t = r ⋅ ( 1 − x x m ) 且 x ( 0 ) = x 0 \frac{dx}{dt}=r\cdot\left(1-\frac{x}{x_m}\right)且x(0)=x_0 dtdx=r(1xmx)x(0)=x0

则,解微分方程可以得到下式:

x ( t ) = x m 1 + ( x m x 0 − 1 ) ⋅ e − r t x\left(t\right)=\frac{x_m}{1+\left(\frac{x_m}{x_0}-1\right)\cdot e^{-rt}} x(t)=1+(x0xm1)ertxm

且,待求参数 x 0 x_0 x0 x m x_m xm r r r

此即为Logistic函数。

x = x m 2 x=\frac{x_m}{2} x=2xm时, x x x增长最快,即 d x d t \frac{dx}{dt} dtdx最大。

阻滞型人口模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值