根据截图定位

在自动化测试或数据抓取中,当常规元素定位方法失效时,可以借助Python结合深度学习来实现截图定位。该方法通过对屏幕截图进行分析,识别并定位目标元素,提高任务执行的准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当无法通过元素定位时,可以通过截图定位。

mport os
import time
import cv2
from PIL import ImageGrab
from pymouse import PyMouse
from pykeyboard import PyKeyboard
from config import Config


class ImageMatch():
    def __init__(self, target_image):
        """给一个目标图"""
        self.target_image = target_image
        self.mouse = PyMouse()  # 鼠标
        self.keyboard = PyKeyboard()  # 键盘
        self.__screenshot_full()  # 调用一次截图
        self.match_result = self.__match()  # 调用一次匹配

    def __screenshot_full(self):
        """截个全屏的图"""
        self.full_screen_file_name = os.path.join(Config.root_path, f"image/full_screen_image/{int(time.time())}.png")
        ImageGrab.grab().save(self.full_screen_file_name)

    def __match(self) -> tuple:
        """匹配图并返回(最佳匹配度,中间坐标点,标记图)"""
        big = cv2.imread(self.full_screen_file_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值