一、多元线性回归
- 所谓的多元线性回归就是指在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。
二、多元线性回归模型
1.建立模型
以二元线性回归模型为例 ,二元线性回归模型如下:
类似的使用最小二乘法进行参数估计 :
2.拟合优度指标
标准误差:对y值与模型估计值之间的离差的一种度量。其计算公式为:
3.置信范围
置信区间的公式为:置信区间=
其中, 是自由度为 的 统计量数值表中的数值, 是观察值的个数, 是包括因变量在内的变量的个数。
三、估值方法
1.普通最小二乘法
普通最小二乘法(Ordinary Least Square, OLS)通过最小化误差的平方和寻找最佳函数。通过矩阵运算求解系数矩阵:
2.广义最小二乘法
广义最小二乘法(Generalized Least Square)是普通最小二乘法的拓展,它允许在误差项存在异方差或自相关,或二者皆有时获得有效的系数估计值。
四、推导过程
五、关于矩阵的计算的程序
我之前写了一个矩阵计算的轮子,详情请参考这篇文章:
《python实现矩阵操作(自造轮子)》