dark
SOL
1.异或运算按位分开。
2.0/1,想办法转化为最小割问题。 可以看做把点分为两个0/1集合,如果有 一条路径两端有确定的点,中间必定会产生"1"的代价,相当于割开此边的代价。
3.建图,
<
u
,
v
>
=
a
d
d
(
u
,
v
,
1
)
,
a
d
d
(
v
,
u
,
1
)
<u,v>=add(u,v,1),add(v,u,1)
<u,v>=add(u,v,1),add(v,u,1)
,
i
f
(
v
a
l
[
u
]
x
o
r
B
i
t
=
=
1
)
a
d
d
(
u
,
T
,
i
n
f
)
e
l
s
e
a
d
d
(
S
,
u
,
i
n
f
)
if(val[u]\ xor\ Bit==1)add(u,T,inf)\ else\ add(S,u,inf)
if(val[u] xor Bit==1)add(u,T,inf) else add(S,u,inf).
固定的点不能被到另一个集合里
4.记录每一个点的取值,让点值在边值最小时最小: 直接按照最小割树的分级和方式dfs,把右集合的点找出来即可。
CODE
注意val<0不能等价于 val==-1,写代码,思维要严谨。
#include<bits/stdc++.h>
using namespace std;
#define sf scanf
#define cs const
#define ll long long
#define ri register int
#define gc getchar()
#define in red()
inline int red(){
int num=0,f=1;char c=gc;
for(;!isdigit(c);c=gc)if(c=='-')f=-1;
for(;isdigit(c);c=gc)num=num*10+(c^48);
return num*f;
}
cs int N=510,M=1e4+10,inf=1e9;
typedef pair<int,int> edge;
edge e[M];
#define fi first
#define se second
ll ans=0,tot=0;
int maxnum=0,n,m;
namespace WLL{
int to[M],nxt[M],c[M],f[M],head[N],cur[N],dep[N],cnt=1,S,T,val[N];
bool vis[N];
inline void addedge(int u,int v,int w){
nxt[++cnt]=head[u];head[u]=cnt;to[cnt]=v;c[cnt]=w;
nxt[++cnt]=head[v];head[v]=cnt;to[cnt]=u;c[cnt]=0;
}
inline bool bfs(){
memset(dep,0,sizeof(dep));
dep[S]=1;cur[S]=head[S];
queue<int> q;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(ri i=head[u];i;i=nxt[i]){
int v=to[i];
if(!dep[v]&&f[i]<c[i]){
dep[v]=dep[u]+1;
cur[v]=head[v];
if(v==T)return 1;
q.push(v);
}
}
}
return 0;
}
inline int dfs(int u,int tot){
if(u==T||(!tot))return tot;
int ret=0,now;
for(ri &i=cur[u];i;i=nxt[i]){
int v=to[i];
if(dep[v]==dep[u]+1&&c[i]>f[i]){
now=dfs(v,min(c[i]-f[i],tot-ret));
ret+=now;f[i]+=now;f[i^1]-=now;
}
if(ret==tot)break;
}
return ret;
}
inline int dinic(){
for(ri i=2;i<=cnt;++i)f[i]=0;
int ret=0;
while(bfs())ret+=dfs(S,inf);
return ret;
}
inline void DFS(int u){
vis[u]=1;
for(ri i=head[u];i;i=nxt[i]){
if(!vis[to[i]]&&f[i^1]<c[i^1])DFS(to[i]);
}
}
inline void solve(int bit){
memset(head,0,sizeof (head));
cnt=1;
S=0;T=n+1;
for(ri i=1;i<=n;++i)
if(val[i]>0)
if(val[i]&(1<<bit))addedge(i,T,inf);
else addedge(S,i,inf);
for(ri i=1;i<=m;++i)
addedge(e[i].fi,e[i].se,1),addedge(e[i].se,e[i].fi,1);
ans+=(1ll<<bit)*1ll*dinic();
memset(vis,0,sizeof(vis));
DFS(T);
for(ri i=1;i<=n;++i)if(vis[i])tot+=(1ll<<bit);
}
}
using namespace WLL;
int main(){
//freopen("data.in","r",stdin);
n=in,m=in;
for(ri i=1;i<=n;++i)val[i]=in,maxnum=max(val[i],maxnum);
for(ri i=1;i<=m;++i)e[i].fi=in,e[i].se=in;
for(ri i=0;(1<<i)<=maxnum;++i){
solve(i);
}
cout<<ans<<'\n';
cout<<tot<<'\n';
return 0;
}