bzoj2400 Optimal Marks 【最小割】

dark


SOL

1.异或运算按位分开。
2.0/1,想办法转化为最小割问题。 可以看做把点分为两个0/1集合,如果有 一条路径两端有确定的点,中间必定会产生"1"的代价,相当于割开此边的代价。
3.建图, < u , v > = a d d ( u , v , 1 ) , a d d ( v , u , 1 ) <u,v>=add(u,v,1),add(v,u,1) <u,v>=add(u,v,1),add(v,u,1)
, i f ( v a l [ u ]   x o r   B i t = = 1 ) a d d ( u , T , i n f )   e l s e   a d d ( S , u , i n f ) if(val[u]\ xor\ Bit==1)add(u,T,inf)\ else\ add(S,u,inf) if(val[u] xor Bit==1)add(u,T,inf) else add(S,u,inf).
固定的点不能被到另一个集合里
4.记录每一个点的取值,让点值在边值最小时最小: 直接按照最小割树的分级和方式dfs,把右集合的点找出来即可。


CODE

注意val<0不能等价于 val==-1,写代码,思维要严谨。

#include<bits/stdc++.h>
using namespace std;
#define sf scanf
#define cs const
#define ll long long  
#define ri register int
#define gc getchar()
#define in red()
inline int red(){
	int num=0,f=1;char c=gc;
	for(;!isdigit(c);c=gc)if(c=='-')f=-1;
	for(;isdigit(c);c=gc)num=num*10+(c^48);
	return num*f;
}
cs int N=510,M=1e4+10,inf=1e9;
typedef pair<int,int> edge;
edge e[M];
#define fi first
#define se second
ll ans=0,tot=0;
int maxnum=0,n,m;
namespace WLL{
	int to[M],nxt[M],c[M],f[M],head[N],cur[N],dep[N],cnt=1,S,T,val[N];
	bool vis[N];
	inline void addedge(int u,int v,int w){
		nxt[++cnt]=head[u];head[u]=cnt;to[cnt]=v;c[cnt]=w;
		nxt[++cnt]=head[v];head[v]=cnt;to[cnt]=u;c[cnt]=0;
	}
	inline bool bfs(){
		memset(dep,0,sizeof(dep));
		dep[S]=1;cur[S]=head[S];
		queue<int> q;q.push(S);
		while(!q.empty()){
			int u=q.front();q.pop();
			for(ri i=head[u];i;i=nxt[i]){
				int v=to[i];
				if(!dep[v]&&f[i]<c[i]){
					dep[v]=dep[u]+1;
					cur[v]=head[v];
					if(v==T)return 1;
					q.push(v);
				}
			}
		}
		return 0;
	}
	inline int dfs(int u,int tot){
		if(u==T||(!tot))return tot;
		int ret=0,now;
		for(ri &i=cur[u];i;i=nxt[i]){
			int v=to[i];
			if(dep[v]==dep[u]+1&&c[i]>f[i]){
				now=dfs(v,min(c[i]-f[i],tot-ret));
				ret+=now;f[i]+=now;f[i^1]-=now;
			}
			if(ret==tot)break;
		}
		return ret;
	}
	inline int dinic(){
		for(ri i=2;i<=cnt;++i)f[i]=0;
		int ret=0;
		while(bfs())ret+=dfs(S,inf);
		return ret;
	}
	inline void DFS(int u){
		vis[u]=1;
		for(ri i=head[u];i;i=nxt[i]){
			if(!vis[to[i]]&&f[i^1]<c[i^1])DFS(to[i]);
		}
	}
	inline void solve(int bit){
		memset(head,0,sizeof (head));
		cnt=1;
		S=0;T=n+1;
		for(ri i=1;i<=n;++i)
			if(val[i]>0)
				if(val[i]&(1<<bit))addedge(i,T,inf);
				else addedge(S,i,inf);
		for(ri i=1;i<=m;++i)
			addedge(e[i].fi,e[i].se,1),addedge(e[i].se,e[i].fi,1);
		ans+=(1ll<<bit)*1ll*dinic();
		memset(vis,0,sizeof(vis));
		DFS(T);
		for(ri i=1;i<=n;++i)if(vis[i])tot+=(1ll<<bit);
	}
}
using namespace WLL;
int main(){
	//freopen("data.in","r",stdin);
	n=in,m=in;
	for(ri i=1;i<=n;++i)val[i]=in,maxnum=max(val[i],maxnum);
	for(ri i=1;i<=m;++i)e[i].fi=in,e[i].se=in;
	for(ri i=0;(1<<i)<=maxnum;++i){
		solve(i);
	}
	cout<<ans<<'\n';
	cout<<tot<<'\n';
	return 0;
}























评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值