2019.10.3 noip模拟赛

T1 天空龙

巨水,不讲。

T3 太阳神

【问题描述】
太阳神拉很喜欢最小公倍数,有一天他想到了一个关于最小公倍 数的题目。
求满足如下条件的数对(a,b)对数:
a,b 均为正整数且 a,b<=n 而 lcm(a,b)>n。
其中的 lcm 当然表示最小公倍数。答案对 1,000,000,007 取模

【输入格式】
第一行一个正整数 n。

【输出格式】
一行一个整数表示答案,对 1,000,000,007 取模。

解析

问题先转化为求:
∑ i = 1 n ∑ j = 1 n 1 [ l c m ( i , j ) > n ] \sum_{i=1}^n\sum_{j=1}^n1[lcm(i,j)>n] i=1nj=1n1[lcm(i,j)>n]

因为 i i i j j j总共的搭配有 n 2 n^2 n2种,所以问题可以转化为求:
n 2 − ∑ i = 1 n ∑ j = 1 n 1 [ l c m ( i , j ) ≤ n ] n^2-\sum_{i=1}^n\sum_{j=1}^n1[lcm(i,j)\leq n] n2i=1nj=1n1[lcm(i,j)n]
明显, ∑ i = 1 n ∑ j = 1 n 1 [ l c m ( i , j ) ≤ n ] \sum_{i=1}^n\sum_{j=1}^n1[lcm(i,j)\leq n] i=1nj=1n1[lcm(i,j)n]要更好求一些。下面我们探讨如何求该式。

首先,由 l c m ( x , y ) = x ⋅ y g c d ( x , y ) lcm(x,y)=\frac{x·y}{gcd(x,y)} lcm(x,y)=gcd(x,y)xy,原式转化为:
∑ i = 1 n ∑ j = 1 n 1 [ i ⋅ j g c d ( i , j ) ≤ n ] \sum_{i=1}^n\sum_{j=1}^n1[\frac{i·j}{gcd(i,j)}\leq n] i=1nj=1n1[gcd(i,j)ijn]
g c d ( i , j ) = d gcd(i,j)=d gcd(i,j)=d,则 i ⋅ j g c d ( i , j ) ≤ n \frac{i·j}{gcd(i,j)}\leq n gcd(i,j)ijn可转化为 i d ⋅ j d ≤ n d \frac{i}{d}·\frac{j}{d}\leq\frac{n}{d} didjdn,上式转化为:
∑ i = 1 n ∑ j = 1 n 1 [ i d ⋅ j d ≤ n d ] \sum_{i=1}^n\sum_{j=1}^n1[\frac{i}{d}·\frac{j}{d}\leq\frac{n}{d}] i=1nj=1n1[didjdn]

枚举 g c d ( i , j ) = d gcd(i,j)=d gcd(i,j)=d,设 x = i d x=\frac{i}{d} x=di, y = j d y=\frac{j}{d} y=dj,由 g c d gcd gcd的定义可知 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,原式转化为:
∑ d = 1 n ∑ x = 1 n ∑ y = 1 n [ g c d ( x , y ) = 1 ] [ x y ≤ n d ] \sum_{d=1}^n\sum_{x=1}^n\sum_{y=1}^n[gcd(x,y)=1][xy\leq \frac{n}{d}] d=1nx=1ny=1n[gcd(x,y)=1][xydn]
g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1进行莫比乌斯反演,得:
∑ d = 1 n ∑ x = 1 n ∑ y = 1 n ∑ k ∣ g c d ( x , y ) μ ( k ) [ x y ≤ n d ] \sum_{d=1}^n\sum_{x=1}^n\sum_{y=1}^n\sum_{k|gcd(x,y)}\mu(k)[xy\leq \frac{n}{d}] d=1nx=1ny=1nkgcd(x,y)μ(k)[xydn]
k k k提前,得:
∑ k μ ( k ) ∑ d = 1 n ∑ k ∣ x ∑ k ∣ y [ x y ≤ n d ] \sum_k\mu(k)\sum_{d=1}^n\sum_{k|x}\sum_{k|y}[xy\leq\frac{n}{d}] kμ(k)d=1nkxky[xydn]
因为 k k k既是 x x x的因数,又是 y y y的因数,所以可以在中括号里同除两个 k k k,从而抵消掉 ∑ k ∣ x ∑ k ∣ y \sum_{k|x}\sum_{k|y} kxky,得到:
∑ d = 1 n μ ( k ) [ d x y ≤ n k 2 ] \sum_{d=1}^n\mu(k)[dxy\leq\frac{n}{k^2}] d=1nμ(k)[dxyk2n]

所以这道题就变成了枚举 k k k,求 d , x , y d,x,y d,x,y的可能取值组数。因为 k ∣ g c d ( x , y ) k|gcd(x,y) kgcd(x,y),而 g c d ( x , y ) ≤ n gcd(x,y)\leq\sqrt n gcd(x,y)n ,所以 k k k只有 n \sqrt n n 种取值。

因为不知道 x , y , d x,y,d x,y,d的大小关系,所以不妨假设 x ≤ y ≤ d x\leq y\leq d xyd,那么 x 3 x^3 x3一定小于 n k 2 \frac{n}{k^2} k2n x 2 y x^2y x2y也一定小于 n k 2 \frac{n}{k^2} k2n。所以外层枚举 k k k,内层枚举 x , y x,y x,y注意 y y y要从 x x x开始枚举。然后讨论 d d d的取值种类。 d d d的取值种类有 n k 2 ⋅ x ⋅ y − y \frac{n}{k^2·x·y}-y k2xyny种。由排列组合的知识可知,若 x = = y x==y x==y,总情况要乘3,;若 x ! = y x!=y x!=y,总情况要乘6.最后乘 μ ( k ) \mu(k) μ(k),计入总答案。复杂度约为 O ( n 2 3 ) O(n^{\frac{2}{3}}) O(n32)(我不会微积分)。

代码

#include<cstdio>
#include<cmath>
#define ll long long
#define maxn 100005
#define mod 1000000007
using namespace std;

ll n,m,tot,ans;
ll mu[maxn],prime[maxn];
bool mark[maxn];

void getmu()
{
	mu[1]=1;
	for(int i=2;i<=100000;++i)
	{
		if(!mark[i])
		{
			prime[++tot]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=tot;++j)
		{
			if(i*prime[j]>100000)break;
			mark[i*prime[j]]=1;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			else
			mu[i*prime[j]]=-mu[i];
		}
	}
}

int main()
{
	getmu();
	scanf("%lld",&n);
	m=sqrt(n+0.5);
	for(ll i=1;i<=m;++i)
	{
		ll nw=n/i/i,sum=0;
		for(ll a=1;a*a*a<=nw;++a)//枚举a
		{
			for(ll b=a;b*b<=nw/a;++b)//枚举b
			{
				ll c=nw/a/b-b;
				if(a==b)sum=(sum+c*3+1)%mod;
				else sum=(sum+c*6+3)%mod;
			}
		}
		sum*=mu[i];
		ans=(ans+sum)%mod;
	}
	ans=(((n%mod)*(n%mod)-ans)%mod+mod)%mod;
	printf("%lld",ans);
	return 0;
}

总结

对于莫比乌斯反演的题目,要先化公式(显然),尽量化出带等号的式子,然后莫比乌斯反演一下。不过我这辈子应该没机会再做这种题了吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值