算法笔记-二叉树基本操作

二叉树的遍历是通过一定顺序访问二叉树的所有结点。
遍历方法一般有四种:先序遍历、中序遍历、后序遍历及层次遍历,其中,前三种一般使用深度优先搜索(DFS)实现,而层次遍历一般用广度优先搜索(BFS)实现。
先序遍历
遍历顺序:根结点—>左子树—>右子树
需要两大件:递归式和递归边界
递归式:先序遍历的定义可得,即先访问根结点,再递归访问左子树,最后递归访问右子树
递归边界:二叉树是一棵空树,即在递归访问子树时,如果碰到子树为空,那么就说明到达了死胡同

void preorder(node* root) {
	if(root == NULL) {
		return ;	//到达空树,递归边界 
	}
	//访问根结点root,例如将其数据域输出
	printf("%d\n", root->data);
	//访问左子树
	preorder(root->left);
	//访问右子树
	preorder(root->right); 
} 

性质:对一棵二叉树的先序遍历序列,序列的第一个一定是根结点。
中序遍历
遍历顺序:左子树—>根结点—>右子树
其递归式由中须遍历的性质可得,递归边界同先序遍历

void inorder(node* root) {
	if(root == NULL) {
		return ;	//到达空树,递归边界 
	}
	//访问左子树
	preorder(root->left);
	//访问根结点root,例如将其数据域输出
	printf("%d\n", root->data);
	//访问右子树
	preorder(root->right); 
} 

性质:只要知道根结点,就可以通过根结点在中序遍历序列中的位置区分出左子树和右子树
后序遍历
遍历顺序:左子树—>右子树—>根结点
其递归式由后须遍历的性质可得,递归边界同先序遍历

void postorder(node* root) {
	if(root == NULL) {
		return ;	//到达空树,递归边界 
	}
	//访问左子树
	preorder(root->left);
	//访问根结点root,例如将其数据域输出
	preorder(root->right);
    //访问右子树	
	printf("%d\n", root->data); 
}

性质:对后序遍历序列来说,序列的最后一个一定是根结点

注意:无论是先序遍历序列还是后序遍历序列,都必须知道中序遍历序列才能唯一地确定一棵树。
因为通过先序遍历序列和后序遍历序列都只能得到根结点,而只有通过中序遍历才能利用根结点把左右子树分开,从而递归生成一棵二叉树。该方法需要保证所有元素都不相同时才能使用。

层次遍历
层次遍历是指按层次的顺序从根结点向下逐层进行遍历,且对同一层的结点为从左到右遍历。
层次遍历就相当于对二叉树从根结点开始的广度优先搜索。
基本思路:

  1. 将根结点root加入队列q
  2. 取出队首结点,访问它
  3. 如果该结点由左孩子,将左孩子入队
  4. 如果该结点有右孩子,将右孩子入队
  5. 返回2,直到队列为空
void LayerOrder(node* root) {
	queue<node*> q;		//注意队列里是存地址
	q.push(root);		//将根结点地址入队
	while(!q.empty()) {
		node* now = q.front();		//取出队首元素
		q.pop();
		printf("%d", now->data);	//访问队首元素
		if(now->lchild != NULL) q.push(now->lchild);	//左子树非空
		if(now->rchild != NULL) q.push(now->rchild);	//右子树非空 
	}
}

注意:这里使用的是node* 而不是node型,同广度优先搜索一样,队列中保存的知识原元素的一个副本,如果队列中直接放node型,当需要修改队首元素时,就会无法对原元素进行修改(即只修改了队列中的副本),故存放node型变量的地址,也就是node* 型变量,这样就可以通过访问地址去修改原元素,就不会有问题了。

这里的node定义徐娅多加一个变量来记录层次layer。

struct node {
	int data;	//数据域
	int layer;	//层次
	node* lchild;	//左指针域
	node* rchild;	//右指针域 
};
void LayerOrder(node* root) {
	queue<node*> q;		//注意队列里是存地址
	root->layer = 1;	//根结点的层号为1 
	q.push(root);		//将根结点地址入队
	while(!q.empty()) {
		node* now = q.front();		//取出队首元素
		q.pop();
		printf("%d", now->data);	//访问队首元素
		if(now->lchild != NULL) {	//左子树非空
			now->lchild->layer = now->lchild + 1; 
			q.push(now->lchild);
		}	
		if(now->rchild != NULL) {	//右子树非空
			now->rchild->layer = now->lchild + 1;
			q.push(now->rchild);
		}		 
	}
}

实例:
给定一棵二叉树的先序遍历序列和中序遍历序列,重建这棵二叉树
分析:
先序序列的第一个元素pre1是当前二叉树的根结点。再由中序序列的性质可知,当前二叉树的根结点将中序序列划分为左子树和右子树。因此,要做的就是在中序序列中找到某个结点ink,使得ink == pre1,这样就在中序序列中找到了根结点。易知左子树的结点个数numLeft = k - 1。于是,左子树的先序序列区间就是[2, k],左子树的中序序列区间[1, k - 1];右子树的先序序列区间是[k + 1, n],右子树的中序序列区间是[k + 1, n],接着只需要往左子树和右子树进行递归构建二叉树即可。
只要先序序列的长度小于等于0时,当前二叉树就不存在了,于是就能以这个条件作为递归边界。

node* Create(int preL, int preR, int inL, int inR) {
	if(preL > preR) {
		return NULL;	//先序序列长度小于等于0时,直接返回
	}
	node* root = new node;	//新建一个结点,用来存放当前二叉树的根结点
	root->data = pre[preL];	//新结点的数据域为根结点的值
	int k;
	for(k = inL; k <= inR; k++) {
		if(in[k] == pre[preL]) {	//在中序序列中找到in[k[ == pre[L]的结点 
			break; 
		}
	}
	int numLeft = k - inL;	//左子树的结点个数
	
	//左子树的先序区间为[preL + 1, preL + numLeft],中序区间为[inL, k - 1]
	//返回左子树的根结点地址,赋值给root的左指针 
	root->lchild = Create(preL + 1, preL + numLeft, inL, k - 1);
	 
	//左子树的先序区间为[preL + numLeft + 1, preR],中序区间为[k + 1, inR]
	//返回右子树的根结点地址,赋值给root的右指针
	root->rchild = Create(preL + numLeft + 1, preR, k + 1, inR);
	
	return root;	//返回根结点地址 
}

注意:中序序列可以和先序序列、后序序列、层次序列中任意一个来构建唯一的二叉树,但后三者两两搭配或是三个一起都无法构建唯一的二叉树

实例:
给出一棵二叉树的后序遍历序列和中序遍历序列,求这棵二叉树的层次遍历序列

输入样例:

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

输出样例:

4 1 6 3 5 7 2
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 50;
struct node {
	int data;
	node* lchild;
	node* rchild;
}; 
int pre[maxn], in[maxn], post[maxn];	//先序、中序、后序
int n;		//结点个数

//当前二叉树的后序序列区间为[postL, postR], 中序序列区间为[inL, inR]
//create函数返回构建出二叉树的根结点地址
node* create(int postL, int postR, int inL, int inR) {
	if(postL > postR) {
		return NULL;	//后序序列长度小于等于0时,直接返回 
	}
	node* root = new node;	//新建一个新的结点,用来存放当前二叉树的根结点
	root->data = post[postR];	//因为是倒序,用postR。新结点的数据域为根结点的值
	int k;
	for(k = inL; k < inR; k++) {
		if(in[k] == post[postR]) {	//在中序序列中找到in[k] == pre[postR]的结点 
			break;
		}
	} 
	int numLeft = k - inL;		//左子树的结点个数
	//返回左子树的根结点地址,赋值给root的左指针
	root->lchild = create(postL, postL + numLeft - 1, inL, k - 1);
	//返回右子树的根结点地址,赋值给root的右指针
	root->rchild = create(postL + numLeft, postR - 1, k + 1, inR);
	return root;	//返回根结点地址 
} 

int num = 0;		//已输出的结点个数
void BFS(node* root) {
	queue<node*> q;		//注意队列里是存地址
	q.push(root);		//将根结点地址入队
	while(!q.empty()) {
		node* now = q.front();		//取出队首元素
		q.pop();	
		printf("%d", now->data);	//访问队首元素
		num++;
		if(num < n) printf(" ");
		if(now->lchild != NULL) q.push(now->lchild);
		if(now->rchild != NULL) q.push(now->rchild); 
	}
} 

int main() {
	scanf("%d", &n);
	for(int i = 0; i < n; i++) {
		scanf("%d", &post[i]);
	}
	for(int i = 0; i < n; i++) {
		scanf("%d", &in[i]);
	}
	node* root = create(0, n - 1, 0, n - 1);	//建树
	BFS(root);		//层次遍历
	return 0; 
}

二叉树的静态实现
可以用来更好理解前面的内容,如不能完全使用指针,可以简单使用数组来完成二叉树的上面所有操作
所谓的静态二叉链表是指,结点的左右指针域使用int型代替,用来表示左右子树的根结点在数组中的下标。为此需要建立一个大小为结点上限个数的node型数组,所有动态生成的结点都直接使用数组中的结点,所有对指针的操作都改为对数组下标的访问。

struct node {
	typename data;	//数据域
	int lchild;		//指向左子树的指针域
	int rchild;		//指向右子树的指针域 
}Node[maxn];

int index = 0;
int newNode(int v) {		//分配一个Node数组中的结点给新的结点,index为下标 
	Node[index].data = v;	//数据域为v 
	Node[index].lchild = -1;	//以-1或maxn表示空,因为数组范围是0~maxn-1
	Node[index].rchild = -1;	 
	return index++; 
}

//查找,root为根结点在数组中的下标
void search(int root, int x, int newdata) {
	if(root == -1) {	//用-1来代替NULL 
		return;	//空树,死胡同(递归边界) 
	}
	if(Node[root].data == x) {		//找到数据域为x的结点,把它修改成newdata 
		Node[root].data = newdata;
	}
	search(Node[root].lchild, x, newdata);	//往左子树搜索x(递归式)
	search(Node[root].rchild, x, newdata);	//往右子树搜索x(递归式) 
} 

//插入,root为根结点在数组中的下标 
void insert(int &root, int x) {	//记得加引号 
	if(root == -1) {	//空树,说明查找失败,也即插入位置(递归边界) 
		root = newNode(x);		//给root赋以新的结点 
	}
	if(由二叉树的性质x应该插在左子树) {
		insert(Node[root].lchild, x);	//往左子树搜索(递归式) 
	} else {
		insert(Node[root].rchild, x);	//往右子树搜索(递归式) 
	} 
}

//二叉树的建立 
int Create(int data[], int n) {
	int root = -1;	//新建根结点
	for(int i = 0; i < n; i++) {
		insert(root, data[i]);	//将data[0]~data[n-1]插入二叉树中 
	} 
	return root;	//返回二叉树的根结点下标 
}

//先序遍历
void preorder(int root) {
	if(root == -1) {
		return;	//到达空树,递归边界 
	}
	//访问根结点root,例如将其数据域输出
	printf("%d\n", Node[root].data);
	//访问左子树
	preorder(Node[root].lchild);
	//访问右子树
	preorder(Node[root].rchild); 
} 

//中序遍历
void inorder(int root) {
	if(root == -1) {
		return;	//到达空树,递归边界 
	}
	//访问左子树
	inorder(Node[root].lchild);
	//访问根结点root,例如将其数据域输出
	printf("%d\n", Node[root].data);
	//访问右子树
	inorder(Node[root].rchild); 
}

//先序遍历
void postorder(int root) {
	if(root == -1) {
		return;	//到达空树,递归边界 
	}	
	//访问左子树
	postorder(Node[root].lchild);
	//访问右子树
	postorder(Node[root].rchild); 
	//访问根结点root,例如将其数据域输出
	printf("%d\n", Node[root].data);
}

//层次遍历
void LayerOrder(int root) {
	queue<int> q;	//此处队列存放结点下标
	q.push(root);	//将根结点地址入队
	while(!q.empty()) {
		int now = q.front();	//取出队首元素
		q.pop();
		printf("%d ", Node[now].data);
		if(Node[now].lchild != -1) q.push(Node[now].lchild);	//左子树非空
		if(Node[now].rchild != -1) q.push(Node[now].rchild);	//右子树非空 
	} 	
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值