Acwing 线性DP

状态转移方程呈现出一种线性的递推形式的DP,我们将其称为线性DP。

Acwing 898.数字三角形

在这里插入图片描述
实现思路:

  • 对这个三角形的数字进行编号,状态表示依然可以用二维表示,即f(i,j),i表示横坐标(横线),j表示纵坐标(斜线)
    在这里插入图片描述
    在这里插入图片描述
  • f(i,j)表示到点(i,j)的路径最大数字之和。对集合进行划分,到达某点(i,j)只可能经过左上方的点(i-1,j-1)或右上方的点(i-1,j)。用a[i][j]表示当前点的数值;
  • 故可得状态转移方程:f[i][j]=max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j])

具体实现代码(详解版):

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 1e9;  
int n; 
int a[N][N];  // 存储三角形中的数字
int f[N][N];  // 动态规划数组,存储从顶点到达每个位置的最大路径和

int main() {
    cin >> n;  
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            cin >> a[i][j];  
        }
    }

    // 初始化 DP 数组,将所有 f[i][j] 初始化为一个极小值,表示不可到达
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= i + 1; j++) {
            f[i][j] = -INF;
        }
    }

    // 设置起始点,顶部元素的最大路径和就是它自身
    f[1][1] = a[1][1];

    // 状态转移方程:f[i][j] 表示到达第 i 行第 j 列的最大路径和
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            // 到达 f[i][j] 位置有两种可能:
            // 1. 来自 f[i-1][j-1],即从左上角过来
            // 2. 来自 f[i-1][j],即从正上方过来
            f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
        }
    }

    // 在最后一行的所有位置中找出最大值
    int res = -INF;
    for (int i = 1; i <= n; i++) {
        res = max(res, f[n][i]);  // 找出最后一行的最大路径和
    }

    cout << res << endl;  
    return 0;
}

这道题还可以从下往上递推,考虑f[i][j]来自左下方和来自右下方两种情况,这样就不需要处理边界问题,而且最后的结果一定集中在f[1][1]中。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 510, INF = 1e9;  // 定义常量 N 为最大行数,INF 为极大值
int n;  // 表示三角形的行数
int f[N][N], a[N][N];  // f 用于存储从底部到达每个位置的最大路径和,a 存储三角形中的数字

int main() {
    int n;
    cin >> n;  // 输入三角形的行数
    
    // 输入三角形中的数字
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= i; j++)
            cin >> a[i][j];
    
    // 初始化:将最后一行的值作为初始状态
    for (int i = 1; i <= n; i++) 
        f[n][i] = a[n][i];
    
    // 自底向上递推,计算每一行的最大路径和
    for (int i = n - 1; i >= 1; i--) {
        for (int j = 1; j <= i; j++) {
            // f[i][j] 表示在 (i, j) 位置的最大路径和
            f[i][j] = max(f[i + 1][j], f[i + 1][j + 1]) + a[i][j];
        }
    }

    // 输出顶点处的最大路径和
    cout << f[1][1] << endl;
    return 0;
}

Acwing 895.最长上升子序列

在这里插入图片描述
实现思路:
在这里插入图片描述

  • 一维数组f[i]表示以第i个数为结尾的最长递增子序列的长度;
  • 状态划分:选定i为结尾的递增子序列,则再从[0,i-1]中筛选出倒数第二个位置的数,使递增子序列的长度最大。注意这个倒数第二个位置的数必须满足a[j]<a[i],这样才能保证递增序列
  • 状态转移方程为f[i]=max(f[i],f[j]+1);

具体实现代码(详解版):

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010; 

int n; 
int a[N], f[N];  // a 存储输入的数组, f 存储以每个元素结尾的最长上升子序列的长度

int main(){
    cin >> n;  
    for(int i = 1 ; i <= n ; i ++) 
        cin >> a[i];  
    
    // 动态规划计算最长上升子序列
    for(int i = 1 ; i <= n ; i ++) {
        f[i] = 1;  // 初始状态,每个元素自身可以作为一个长度为1的子序列
        for(int j = 1 ; j < i ; j ++){
            // 如果前面的元素 a[j] 比当前元素 a[i] 小,则可以考虑将 a[i] 接在 a[j] 
            //之后形成一个更长的子序列
            if(a[j] < a[i]) 
                f[i] = max(f[i], f[j] + 1);  // 更新 f[i],选择使 f[i] 最大的方案
        }
    }

    // 找到 f 数组中的最大值,即最长上升子序列的长度
    int res = 0;
    for(int i = 1 ; i <= n ; i ++) 
        res = max(res, f[i]);
    
    cout << res << endl;  
    
    return 0;
}

那有没有办法进行优化呢?最长上升子序列(LIS)问题的时间复杂度为 O ( n 2 ) , O(n^2), O(n2),我们可以通过贪心算法 + 二分查找来将时间复杂度优化为 O ( n l o g n ) O(nlogn) O(nlogn).

Acwing 896. 最长上升子序列 II

在这里插入图片描述
实现思路:

  • 首先在上述解法的基础上,假如存在一个序列3 1 2 5,以3结尾的上升子序列长度为1,以1为结尾的上升子序列长度也为1,这是两个长度一样的上升子序列(伏笔:结尾元素1<3)。在继续向后遍历查找时,看3这个序列,当出现一个比3大的数时,以3结尾的上升子序列就会更新,比如遍历到5了,那么上升序列变为3 5;同时注意到这个5一定会加入到以1结尾的上升序列中(因为1<3,那么1<5的),那么含有1的上升序列长度一定是>=2的,因为中间可能存在<3但>1的数(比如这里就有2,序列长度就更新为3)。可以看出存在3的这个序列就不需要枚举了,因为存在1的序列往后遍历的长度是一定大于你这个存在3的序列的(前提是以1结尾和以3结尾的上升序列长度相等),那我找最长的时候怎么都轮不到包含3的序列头上,那我一开始在1和3结尾的序列之后直接舍弃枚举包含3的序列了(去掉冗余)。
  • 在以上的分析得到:当存在两个上升序列长度相同时,结尾数更大的序列可以舍去不再枚举,所以每次就干脆选出相同长度结尾元素最小的序列继续操作
  • 那么状态表示更改为:f[i]表示长度为i+1(因为下标从0开始)的最长上升子序列,末尾最小的数字。(所有长度为i+1的最长上升子序列所有结尾中,结尾最小的数) 即长度为i的子序列末尾最小元素是什么。
  • 状态计算:序列长度+1(cnt++),当前末尾最小元素变为a[i]。 **若a[i]小于等于f[cnt-1],**说明不会更新当前的长度,但之前末尾的最小元素要发生变化,找到第一个 大于或等于(不能直接写大于,要保证单增) a[i]的数的位置mid,将这个数a[i]放在mid的位置(其实就是找到a[i]适合存在的位置,不改变序列长度)。

具体实现代码(版本一):

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

const int N = 100010;  // 定义最大数组大小
int n, cnt;
int a[N], f[N];

int main() {
    // 输入数组长度
    cin >> n;

    // 输入数组元素
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }

    // 初始化 cnt
    cnt = 0;

    // 处理第一个元素
    f[cnt++] = a[0];

    for (int i = 1; i < n; i++) { // 注意这里应为 i < n
        if (a[i] > f[cnt - 1]) {
            f[cnt++] = a[i]; // 如果 a[i] 大于当前上升序列末尾的数,则末尾加入
        } else {
            // 使用二分查找
            int l = 0, r = cnt - 1;
            while (l < r) {
                int mid = (l + r) / 2;
                if (f[mid] >= a[i]) r = mid; // 找到第一个 >= a[i] 的位置
                else l = mid + 1;
            }
            f[r] = a[i]; // 替换找到的位置
        }
    }

    cout << cnt << endl; // 输出最长上升子序列的长度

    return 0;
}

版本二(使用lower_bound函数,找到第一个 >= a[i] 的位置)

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

const int N = 100010;  // 定义最大数组大小
int n;
int a[N];

int main() {
    // 输入数组长度
    cin >> n;

    // 输入数组元素
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }

    // 用于维护当前的上升子序列
    vector<int> d;

    // 遍历数组的每个元素
    for (int i = 0; i < n; i++) {
        // 使用二分查找找到第一个 >= a[i] 的位置
        auto it = lower_bound(d.begin(), d.end(), a[i]);

        if (it == d.end()) {
            // 如果没有找到比 a[i] 大的元素,则将 a[i] 添加到序列末尾
            d.push_back(a[i]);
        } else {
            // 否则,用 a[i] 替换掉找到的这个位置的元素
            *it = a[i];
        }
    }

    // 最终 d 的大小就是最长上升子序列的长度
    cout << d.size() << endl;

    return 0;
}

Acwing 897. 最长公共子序列

在这里插入图片描述
实现思路:
在这里插入图片描述

  • f(i,j)表示第一个序列的前i个字母中出现并且在第二序列前j个字母中出现的最长的公共子序列长度
  • 状态可划分为4种情况:a[i]表示为第一个序列中第i个字符,b[j]表示第二个子序列中第j个字符
    • 00:表示最长公共子序列中一定不包含字符a[i]和b[j],用f[i-1][j-1]表示
    • 01:表示最长公共子序列中一定不包含字符a[i],一定包含b[j]。不能用f[i-1][j]表示(不是等价的),因为f[i-1][j]表示的是该公共子序列一定不包含a[i],但b[j]不一定,可能包含也可能不包含f[i-1][j]是包含01这种情况的。但是由于求的是最大子序列的长度(而不是具体元素),所以求解的时候可以用f[i-2][j]来求解
    • 10:表示最长公共子序列中一定包含字符a[i],一定不包含b[j]。用f[i][j-1]求解,但含义不等价,同上。
    • 11:表示最长公共子序列中一定包含字符a[i]和b[j],用f[i-1][j-1]+1表示,但注意需要满足a[i] = b[j]才行,因为公共子序列,既然包含a[i]、b[i],那么两者必然相等才行
  • 00的情况实质上已经被包含在01、10两种情况之中,所以可以省略,故只需求下面三种状态

具体实现代码(详解版):

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

char a[N], b[N];
int f[N][N];
int n, m;

int main() {
    
    cin >> n >> m;
    // 输入字符串,保留 a[0] 和 b[0] 为空字符
    cin >> (a + 1) >> (b + 1);

    // 动态规划计算最长公共子序列
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            // 如果字符相同,则长度加 1
            if (a[i] == b[j]) {
                f[i][j] = f[i - 1][j - 1] + 1;
            } else {
                // 否则取上方或左方的最大值
                f[i][j] = max(f[i - 1][j], f[i][j - 1]);
            }
        }
    }

    // 输出最长公共子序列的长度
    cout << f[n][m] << endl;

    return 0;
}

Acwing 902.最短编辑距离

在这里插入图片描述
实现思路:
在这里插入图片描述

  • f(i,j)表示,集合为所有将第一个字符串前i个字符变为第二个字符串前j个字符的方式的最少操作数量
  • 集合划分:以第一个字符串i处可能进行的三种不同操作后转化为第二个字符串。
    • 删去i个字符,即前i-1个字符已经与第二个字符串的前j个字符相同,因此只需要在上一个状态加上删去操作即可,即f(i,j)=f(i-1,j)+1
    • 增加i个字符才能与第二个字符串的前j个字符相等,即前i-1个字符已经与第二个字符串的前j-1个字符相同,因此只需要在上一个状态加上增加第i个字符操作即可,即f(i,j)=f(i-1,j-1)+1
    • 修改i个字符,即前i-1个字符已经与第二个字符串的前j-1个字符相同,再比较第i个字符是否与第j个字符相同,若相同就不用操作,若不同则需要增加一次修改操作,即f(i,j)=f(i-1,j-1)+0 or 1
  • 最终f(i,j)取三者最小值
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main() {
  
    cin >> n >> (a + 1) >> m >> (b + 1);
    
    // 初始化边界条件
    for (int i = 0; i <= m; i++) f[0][i] = i; // 如果 a 为空,编辑距离就是 b 的长度
    for (int i = 0; i <= n; i++) f[i][0] = i; // 如果 b 为空,编辑距离就是 a 的长度
    
    // 动态规划求解最小编辑距离
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            // 插入或删除操作
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            
            // 替换操作,如果当前字符不相等
            if (a[i] != b[j]) 
                f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
            else 
                // 字符相等时,不需要操作,保持之前的值
                f[i][j] = min(f[i][j], f[i - 1][j - 1]);
        }
    }
    
    
    cout << f[n][m] << endl;
    
    return 0;
}

Acwing 899.编辑距离

在这里插入图片描述

实现思路:与上题思路一致,不过在读入时有所区别,该题需要读入n个字符串,m次问询,因此读入n个第一个字符串,然后在每次问询中读入第二个字符串,计算n个第一个字符串要变化到第二个字符串的次数,统计在规定次数内的第一个字符串有几个。

具体实现代码(详解版):

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 15, M = 1010; // 定义常量 N 表示字符串最大长度,M 表示字符串的最大数量
int n, m;
int f[N][N]; // DP 数组,用于存储编辑距离的中间结果
char str[M][N]; // 存储多个输入字符串,每个字符串最大长度为 N

// 求两个字符串的编辑距离
int edit_dis(char a[], char b[]) {
    // 获取两个字符串的长度
    int la = strlen(a + 1), lb = strlen(b + 1);
    
    // 初始化DP数组,表示空串与某一字符串之间的编辑距离
    for (int i = 0; i <= lb; i++) f[0][i] = i; // 第一行:空串变成b的前i个字符需要插入i次
    for (int i = 0; i <= la; i++) f[i][0] = i; // 第一列:a的前i个字符变成空串需要删除i次
    
    // 计算编辑距离
    for (int i = 1; i <= la; i++) { // 遍历字符串a的每个字符
        for (int j = 1; j <= lb; j++) { // 遍历字符串b的每个字符
            // 增或删操作,取最小值
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            // 判断是否需要替换操作
            if (a[i] != b[j]) {
                f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1); // 替换操作
            } else {
                f[i][j] = min(f[i][j], f[i - 1][j - 1]); // 如果字符相同,不需要操作
            }
        }
    }
    
    return f[la][lb]; 
}

int main() {
    cin >> n >> m; 
    for (int i = 0; i < n; i++) cin >> (str[i] + 1); // 输入 n 个字符串,str[i] 表示第 i 个字符串
    
    // 处理每个查询
    while (m--) {
        char s[N]; // 用于存储每次查询的字符串
        int limit, res = 0; // limit 表示编辑距离的限制,res 用于记录满足条件的字符串数量
        cin >> (s + 1) >> limit; // 输入查询字符串 s 和编辑距离限制 limit
        
        // 遍历每个输入的字符串,计算其与查询字符串的编辑距离
        for (int i = 0; i < n; i++) {
            // 如果编辑距离小于等于给定的限制,则结果加1
            if (edit_dis(str[i], s) <= limit) res++;
        }
        
      
        cout << res << endl;
    }
    
    return 0;
}

上就是线性DP的一些经典题目,我们总结一下基本思路:

  • 定义状态数组:找出能够表示子问题最优解的状态。
  • 推导状态转移方程:分析如何通过已知的子问题解,递推出当前问题的解。
  • 初始化:确定边界条件,即初始状态的值。
  • 循环递推:根据状态转移方程计算所有状态的值。
  • 结果提取:从状态数组中提取最终解。

线性DP是动态规划的一类基础问题,常用于解决序列和数组相关的最优子结构问题。通过合理的状态定义和转移方程,可以有效求解复杂的优化问题。在实际应用中,通过空间优化、二分优化和记忆化递归等技术可以进一步提升算法的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值