紫书习题训练一

本文介绍了两道ACM题目,第一题涉及找一个数除以另一个数后的循环小数,要求输出循环节,并对超过50位的循环节进行截断处理。第二题是判断字符串s2能否嵌套在s1中,通过扫描s2的值和s1的值的和是否不超过3来确定。
摘要由CSDN通过智能技术生成
第一题 Repeating Decimals
分析

这道题是找一个数除以另一个数然后输出结果,将循环节用括号包裹起来,
如果循环节长度超过50位就只输出前50位,剩下的用"…"代替。第二行前面
有三个空格。(一定要注意输出格式)
如果被除数出现重复,那么就出现了循环节,也就相当于
n除以m的余数只能是0~m-1,当计算m+1次时至少存在一个余数相同,
即为循环节;存储余数和除数,输出即可。

#include <stdio.h>
#include <string.h>

int qot[3500], rmd[3500];
int main()
{
    int a, b;
    while(scanf("%d %d", &a, &b) != EOF){
        int m = 0, n = 0;
        memset(qot, 0, sizeof(qot));
        memset(rmd, 0, sizeof(rmd));
        qot[0] = a / b;
        rmd[0] = a % b;
        for(int i = 1; ; i++){
            qot[i] = rmd[i-1] * 10 / b;
            rmd[i] = rmd[i-1] *10 % b;
            for(int j = 1; j < i; j++){
                if(qot[j] == qot[i] && rmd[j] == rmd[i]){
                    m = i;
                    n = j;
                    break;
                }
            }
            if(n) break;
        }
        printf("%d/%d = %d.", a, b, qot[0]);
        for(int i = 1; i < n && i <= 50; i++)
            printf("%d", qot[i]);
        printf("(");
        for(int i = n; i < m && i <= 50; i++)
            printf("%d", qot[i]);
        if(m > 50) printf("...");
        printf(")\n");
        printf("   %d = number of digits in repeating cycle\n\n", m-n);
    }
    return 0;
}
第二题 Kickdown
分析

可以将一个长条s1固定,另外一个s2依次后移寻找能否嵌套,
如果从头至尾扫描s2的值和s1的值的和都符合高度不超过三,
那就可以认为可以嵌套,否则将s2的头位置继续后移。

#include<iostream>
#include<cstring>
using namespace std;
int main()
{
    char s[105], t[105];
    int len1, len2, len;
    while(cin>>s>>t)
    {
        int i, j, x, y;
        int len1 = strlen(s), len2 = strlen(t);
        for( i=0; i<len1; i++ )
        {
            bool flag = true;
            for( j=0; j<len2 && j+i<len1 ; j++ )
                if(s[i+j]=='2'&&t[j]=='2'){
                    flag = false;
                    break;
                }
            if(flag)
                break;
 
        }
        x = max(len1, len2+i);
        i = j = 0;
        for( i=0; i<len2; i++ )
        {
            bool flag = true;
            for( j=0; j<len1 && j+i<len2; j++ )
                if(t[i + j] == '2' && s[j] == '2'){
                    flag = false;
                    break ;
                }
            if(flag)
                break;
        }
        y = max(len2, len1+i);
    cout<<min(x,y)<<endl;
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值