Python-OpenCV
菩提树下祈愿的少年
QQ:951274168
展开
-
python批量处理图片尺寸(将文件夹中所有图片设定为固定尺寸)
方法一:import numpy as npimport osimport cv2# 设置图片路径,该路径下包含了14张jpg格式的照片,名字依次为0.jpg, 1.jpg, 2.jpg,...,14.jpgDATADIR="D:\Code\ToolBox"#设置目标像素大小,此处设为300'''IMG_SIZE=300#使用os.path模块的join方法生成路径'''path=os.path.join(DATADIR) #使用os.listdir(path)函数,返回path路径转载 2021-01-12 21:46:30 · 4986 阅读 · 1 评论 -
人脸识别-批量裁剪图像
# -*- codeing: utf-8 -*-import sysimport osimport cv2import dlibinput_dir = './capture_image'output_dir = './edit_others_imgs'size = 64 #指定图像大小if not os.path.exists(output_dir): os.makedirs(output_dir)#使用dlib自带的frontal_face_detector作为我们的特征提原创 2020-12-28 22:08:15 · 2308 阅读 · 0 评论 -
Python 读取文件夹下的所有图片
import cv2import os# 读取函数,用来读取文件夹中的所有函数,输入参数是文件名def read_directory(directory_name): for filename in os.listdir(directory_name): print(filename) img = cv2.imread(directory_name + "/" + filename) cv2.imshow(filename, img)原创 2020-12-28 21:30:38 · 6599 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(七)————7.7空间域滤波和频率域滤波
空间域滤波和频率域滤波1.空间域滤波空间域滤波是指在图像空间中借助模板对图像领域进行操作,处理图像每一个像素值。主要分为线性滤波和非线性滤波两类,根据功能可分为平滑滤波器和锐化滤波器。平滑可通过低通来实现,平滑的目的有两类,一是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小尖端连接起来;二是去噪。锐化则可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。实现空间域滤波有很多类型,如均值、中值、索贝尔、高斯、拉普拉斯、高斯-拉普拉斯等,但各有差异A)均值滤波:由fspecial函数生成的原创 2020-11-01 17:13:35 · 570 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十九 绘图及交互)————19.1 绘画基础
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第19章 绘图及交互OpenCV提供了方便的绘图功能,使用其中的绘图函数可以绘制直线、矩形、圆、椭圆等多种几何图形,还能在图像中的指定位置添加文字说明。在处理图像时,可能需要与当前正在处理的图像进行交互。OpenCV提供了鼠标事件,使用户可以通过鼠标与图像交互。鼠标事件能够识别常用的鼠...原创 2020-03-22 21:05:26 · 279 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(九)———— 图像梯度
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第9章 图像梯度图像梯度计算的是图像变化的速度。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小。一般情况下,图像梯度计算的是图像的边缘信息。严格来讲,图像梯度计算需要求导数,但是图像梯度一般通过计算像素值的差来得...原创 2020-03-01 11:20:13 · 288 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(七)————图像平滑处理
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm在尽量保留图像原有信息的情况下,过滤掉图像内部的噪声,这一过程称为对图像的平滑处理,所得的图像称为平滑图像。例如,下图是含有噪声的图像,在图像内存在噪声信息,我们通常会通过图像平滑处理等方式去除这些噪声信息。通过图像平滑处理,可以有效地过滤掉图像内的噪声信息。如下图所示是对上图进行图像...原创 2020-03-01 11:19:38 · 381 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习( 二十三章 人脸识别)———— 23.4 Fisherfaces人脸识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm23.5 人脸数据库下面我们对几个常用的资源进行简单说明。1.CAS-PEALCAS-PEAL(Chinese Academy of Sciences - Pose, Expression, Accessory, and Lighting)是中科院计算技术研究所在2003年完成的包含1...原创 2020-02-29 09:40:32 · 506 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习( 二十三章 人脸识别)———— 23.4 Fisherfaces人脸识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm23.4 Fisherfaces人脸识别PCA方法是EigenFaces方法的核心,它找到了最大化数据总方差特征的线性组合。不可否认,EigenFaces是一种非常有效的方法,但是它的缺点在于在操作过程中会损失许多特征信息。因此,在一些情况下,如果损失的信息正好是用于分类的关键信息,必然会...原创 2020-02-28 10:56:06 · 1033 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习( 二十三章 人脸识别)———— 23.3 EigenFaces人脸识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm23.3 EigenFaces人脸识别EigenFaces通常也被称为特征脸,它使用主成分分析(Principal Component Analysis, PCA)方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。23.3.1 基本原理在现实世界中,很多...原创 2020-02-27 09:49:58 · 1110 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习( 二十三章 人脸识别)———— 23.2 LBPH人脸识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm23.2 LBPH人脸识别人脸识别的第一步,就是要找到一个模型可以用简洁又具有差异性的方式准确反映出每个人脸的特征。识别人脸时,先将当前人脸采用与前述同样的方式提取特征,再从已有特征集中找出当前特征的最邻近样本,从而得到当前人脸的标签。OpenCV提供了三种人脸识别方法,分别是LBPH方...原创 2020-02-26 10:29:48 · 7085 阅读 · 1 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习( 二十三章 人脸识别)————23.1 人脸检测
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm第23章 人脸识别人脸识别是指程序对输入的人脸图像进行判断,并识别出其对应的人的过程。人脸识别程序像我们人类一样,“看到”一张人脸后就能够分辨出这个人是家人、朋友还是明星。当然,要实现人脸识别,首先要判断当前图像内是否出现了人脸,也即人脸检测。只有检测到图像中出现了人脸,才能根据人脸判断...原创 2020-02-25 10:10:38 · 624 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十二章 K均值聚类)————22.3 简单示例
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm22.3 简单示例本节通过几个简单示例来说明如何使用OpenCV中提供的函数cv2.kmeans()实现K均值聚类。eg1:随机生成一组数据,使用函数cv2.kmeans()对其分类。为了方便理解,假设有两种豆子,其中一种是“xiaoMI”,另外一种是“daMI”。它们的直径不一样,x...原创 2020-02-24 10:54:28 · 238 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十二章 K均值聚类)———— 22.2 K均值聚类模块
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm22.2 K均值聚类模块OpenCV提供了函数cv2.kmeans()来实现K均值聚类。该函数的语法格式为:retval, bestLabels, centers=cv2.kmeans(data, K, bestLabels, criteria, attempts, flags)式中...原创 2020-02-23 17:32:56 · 172 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十二章 K均值聚类)———— 22.1 K均值聚类理论基础
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm第22章 K均值聚类当我们要预测的是一个离散值时,做的工作就是“分类”。例如,要预测一个孩子能否成为优秀的运动员,其实就是要将他分到“好苗子”(能成为优秀的运动员)或“普通孩子”(不能成为优秀运动员)的类别。当我们要预测的是一个连续值时,做的工作就是“回归”。例如,预测一个孩子将来成为运动...原创 2020-02-22 20:09:40 · 189 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十一章 支持向量机)———— 21.2 SVM案例介绍
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm21.2 SVM案例介绍在使用支持向量机模块时,需要先使用函数cv2.ml.SVM_create()生成用于后续训练的空分类器模型。该函数的语法格式为:svm = cv2.ml.SVM_create( )获取了空分类器svm后,针对该模型使用svm.train()函数对训练数据进行训...原创 2020-02-21 11:09:00 · 823 阅读 · 1 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十一章 支持向量机)————21.1 支持向量机理论基础
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm第21章 支持向量机支持向量机(Support Vector Machine, SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大)。当数据集较小时,使用支持向量机进行分类非常有效。支持向量机是最好的现成分类器之一,...原创 2020-02-21 11:08:00 · 263 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.6 K近邻手写数字识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.6 K近邻手写数字识别本节使用OpenCV自带的K近邻模块识别手写数字。eg:使用OpenCV自带的函数完成对手写数字的识别。代码如下:import cv2import numpy as npimport matplotlib.pyplot as plt#读取样本(特征)...原创 2020-02-20 11:20:30 · 219 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.5 K近邻模块的基本使用
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.5 K近邻模块的基本使用在OpenCV中,不需要自己编写复杂的函数实现K近邻算法,直接调用其自带的模块函数即可。本节通过一个简单的例子介绍如何使用OpenCV自带的K近邻模块。eg2:演示OpenCV自带的K近邻模块的使用方法。本例中有两组位于不同位置的用于训练的数据集,如图20...原创 2020-02-20 11:20:00 · 263 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.4 自定义函数手写数字识别
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.4 自定义函数手写数字识别OpenCV提供了函数cv2.KNearest()用来实现K近邻算法,在OpenCV中可以直接调用该函数。为了进一步了解K近邻算法及其实现方式,本节首先使用Python和OpenCV实现一个识别手写数字的实例。eg:编写程序,演示K近邻算法。在本例中,0...原创 2020-02-19 15:01:54 · 437 阅读 · 1 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.3 手写数字识别的原理
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.3 手写数字识别的原理20.1节我们仅仅取了两个特征维度进行说明。在实际应用中,可能存在着更多特征维度需要计算。下面以手写数字识别为例进行简单的介绍。假设我们要让程序识别图20-2中上方的数字(当然,你一眼就知道是“8”,但是现在要让计算机识别出来)。识别的方式是,依次计算该数字图...原创 2020-02-19 15:00:42 · 261 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.2 K近邻算法计算
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.2 计算计算机的“感觉”是通过逻辑计算和数值计算来实现的。所以,在大多数的情况下,我们要对计算机要处理的对象进行数值化处理,将其量化为具体的值,以便后续处理。比较典型的方法是取某几个固定的特征,然后将这些特征量化。例如,在人脸识别的过程中,可以根据人脸部器官的形状描述以及它们之间的距...原创 2020-02-17 13:48:38 · 218 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(二十章 K近邻算法)————20.1理论基础
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm第20章 K近邻算法机器学习算法是从数据中产生模型,也就是进行学习的算法(下文也简称为算法)。我们把经验提供给算法,它就能够根据经验数据产生模型。在面对新的情况时,模型就会为我们提供判断(预测)结果。例如,我们根据“个子高、腿长、体重轻”判断一个孩子是个运动员的好苗子。把这些数据量化后交给...原创 2020-02-17 13:47:52 · 683 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十八 视频处理)————18.3 VideoCapture类
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm18.3 视频操作基础视频是由视频帧构成的,将视频帧从视频中提取出,对其使用图像处理的方法进行处理,就可以达到处理视频的目的。eg1:提取视频的Canny边缘检测结果。代码如下:import cv2cap = cv2.VideoCapture('output2.avi')whi...原创 2020-02-05 16:08:14 · 247 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十八 视频处理)————18.2 VideoWriter类
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm18.2 VideoWriter类OpenCV中的cv2.VideoWriter类可以将图片序列保存成视频文件,也可以修改视频的各种属性,还可以完成对视频类型的转换。18.2.1 类函数介绍cv2.VideoWriter类常用的成员函数包括:构造函数、write函数等。本节简单介绍这...原创 2020-02-05 16:07:30 · 1036 阅读 · 1 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十九 绘图及交互)————19.3 滚动条
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm19.3 滚动条滚动条(Trackbar)在OpenCV中是非常方便的交互工具,它依附于特定的窗口而存在。通过调节滚动条能够设置、获取指定范围内的特定值。在OpenCV中,函数cv2.createTrackbar()用来定义滚动条,其语法格式为:cv2.createTrackbar(t...原创 2020-02-04 18:33:16 · 306 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十九 绘图及交互)————19.2 鼠标交互
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm19.2 鼠标交互当用户触发鼠标事件时,我们希望对该事件做出响应。例如,用户单击鼠标,我们就画一个圆。通常的做法是,创建一个OnMouseAction()响应函数,将要实现的操作写在该响应函数内。响应函数是按照固定的格式创建的,其格式为:def OnMouseAction(event, ...原创 2020-02-04 18:32:14 · 374 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十八 视频处理)————18.1 VideoCapture类
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第18章 视频处理视频信号(以下简称为视频)是非常重要的视觉信息来源,它是视觉处理过程中经常要处理的一类信号。实际上,视频是由一系列图像构成的,这一系列图像被称为帧,帧是以固定的时间间隔从视频中获取的。获取(播放)帧的速度称为帧速率,其单位通常使用“帧/秒”表示,代表在1秒内所出现的帧数...原创 2020-02-04 18:30:46 · 723 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十七 图像分割与提取)————17.4 交互式前景提取
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm17.4 交互式前景提取经典的前景提取技术主要使用纹理(颜色)信息,如魔术棒工具,或根据边缘(对比度)信息,如智能剪刀等完成。2004年,微软研究院(剑桥)的Rother等人在论文GrabCut: Interactive Foreground Extraction Using Itera...原创 2020-01-24 19:11:04 · 527 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十七 图像分割与提取)————17.3 分水岭算法图像分割实例i
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm17.3 分水岭算法图像分割实例本节结合前面介绍的知识,讲解一个图像分割实例。使用分水岭算法进行图像分割时,基本的步骤为:1.通过形态学开运算对原始图像O去噪。2.通过腐蚀操作获取“确定背景B”。需要注意,这里得到“原始图像-确定背景”即可。3.利用距离变换函数cv2.distan...原创 2020-01-23 13:53:12 · 355 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十七 图像分割与提取)————17.2 分水岭相关函数介绍
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm17.2 相关函数介绍在OpenCV中,可以使用函数cv2.watershed()实现分水岭算法。在具体的实现过程中,还需要借助于形态学函数、距离变换函数cv2.distanceTransform()、cv2.connectedComponents()来完成图像分割。下面对分水岭算法中用...原创 2020-01-22 13:02:34 · 613 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十七 图像分割与提取)————17.1 图像分割与提取—分水岭算法基本原理
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第17章 图像分割与提取在图像处理的过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆、行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的...原创 2020-01-21 14:06:39 · 633 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十六 霍夫变换)————16.4 霍夫圆环变换
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm16.4 霍夫圆环变换霍夫变换除了用来检测直线外,也能用来检测其他几何对象。实际上,只要是能够用一个参数方程表示的对象,都适合用霍夫变换来检测。用霍夫圆变换来检测图像中的圆,与使用霍夫直线变换检测直线的原理类似。在霍夫圆变换中,需要考虑圆半径和圆心(x坐标、y坐标)共3个参数。在Ope...原创 2020-01-19 14:31:36 · 356 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十六 霍夫变换)————16.3 HoughLinesP函数函数
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm16.3 HoughLinesP函数概率霍夫变换对基本霍夫变换算法进行了一些修正,是霍夫变换算法的优化。它没有考虑所有的点。相反,它只需要一个足以进行线检测的随机点子集即可。为了更好地判断直线(线段),概率霍夫变换算法还对选取直线的方法作了两点改进:● 所接受直线的最小长度。如果有超...原创 2020-01-16 09:18:57 · 444 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十六 霍夫变换)————16.2 HoughLines函数
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm16.2 HoughLines函数OpenCV提供了函数cv2.HoughLines()用来实现霍夫直线变换,该函数要求所操作的源图像是一个二值图像,所以在进行霍夫变换之前要先将源图像进行二值化,或者进行Canny边缘检测。函数cv2.HoughLines()的语法格式为:lines...原创 2020-01-15 09:12:00 · 703 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十六 霍夫变换)————16.1 霍夫变换原理
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第16章 霍夫变换霍夫变换是一种在图像中寻找直线、圆形以及其他简单形状的方法。霍夫变换采用类似于投票的方式来获取当前图像内的形状集合,该变换由Paul Hough(霍夫)于1962年首次提出。最初的霍夫变换只能用于检测直线,经过发展后,霍夫变换不仅能够识别直线,还能识别其他简单的图形结构...原创 2020-01-14 08:41:27 · 440 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十五 模板匹配)————15.2 多模板匹配
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm15.2 多模板匹配在前面的例子中,我们在输入图像lena中搜索其眼部子图,该子图在整个输入图像内仅出现了一次。但是,有些情况下,要搜索的模板图像很可能在输入图像内出现了多次,这时就需要找出多个匹配结果。而函数cv2.minMaxLoc()仅仅能够找出最值,无法给出所有匹配区域的位置信息...原创 2020-01-13 08:52:30 · 688 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十五 模板匹配)————15.1 模板匹配基础
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm第15章 模板匹配模板匹配是指在当前图像A内寻找与图像B最相似的部分,一般将图像A称为输入图像,将图像B称为模板图像。模板匹配的操作方法是将模板图像B在图像A上滑动,遍历所有像素以完成匹配。例如,在下图中,希望在图中的大图像“lena”内寻找左上角的“眼睛”图像。此时,大图像“lena...原创 2020-01-12 13:43:54 · 461 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十四 傅里叶变换)————14.3 OpenCV实现傅里叶变换
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm14.3 OpenCV实现傅里叶变换OpenCV提供了函数cv2.dft()和cv2.idft()来实现傅里叶变换和逆傅里叶变换,下面分别展开介绍。14.3.1 实现傅里叶变换函数cv2.dft()的语法格式为:返回结果=cv2.dft(原始图像,转换标识)在使用该函数时,需要注...原创 2020-01-11 14:11:44 · 705 阅读 · 0 评论 -
win10+Python3.7.3+OpenCV3.4.1入门学习(十四 傅里叶变换)————14.2 Numpy实现傅里叶变换
Python版本是Python3.7.3,OpenCV版本OpenCV.3.4.1,开发环境为PyCharm14.2 Numpy实现傅里叶变换Numpy模块提供了傅里叶变换功能,Numpy模块中的fft2()函数可以实现图像的傅里叶变换。本节介绍如何用Numpy模块实现图像的傅里叶变换,以及在频域内过滤图像的低频信息,保留高频信息,实现高通滤波。14.2.1 实现傅里叶变换Numpy提供的...原创 2020-01-09 17:48:58 · 533 阅读 · 0 评论