暴力解法破解PTA L1-006 连续因子 (20分)

L1-006 连续因子 (20分)
一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。

输入格式:
输入在一行中给出一个正整数 N(1<N<2​的31次方)。

输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1因子2……*因子k 的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。

输入样例:

630

输出样例:

3
5*6*7

易错点分析:
表示整数的方式,因为最长是2的32次方,所以整数的类型需要是long

最终解决方法:


import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        long num = scanner.nextInt();

        // 使用暴力解法
        long start = 0;
        long len = 0;
        for (int i = 2; i < Math.sqrt(num); i++) {
            long sum = 1;
            for (int j = i; sum * j < num; j++) {
                sum *= j;
                // 当出现大于len的情况下,更新len和start的位置
                if(num % sum == 0 && j - i + 1 > len) {
                    start = i;
                    len = j - i + 1;
                }
            }
        }

        // 说明个根本就没有
        if(start == 0) {
            start = num;
            len = 1;
        }

        System.out.println(len);
        System.out.printf("%d", start);
        for (int i = 1; i < len; i++) {
            System.out.printf("*%d", start + i);
        }
    }
}
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页