1、LLM3.1
8B(80亿)、70B(700亿)、405B(4050亿)
支持八种语言,具备128K扩展上下文的长度。
提供通用知识,数学计算、多语言翻译和工具使用能力,开源下载,并允许开发者定制和微调。
其中4050亿的参数的模型,可与GPT-4、GPT-4o、Claude 3.5 Sonnet等领先的闭源模型相媲美。
在预训练模型上,进行几轮对齐来生成最终的聊天模型。
每一轮涉及监督微调(SFT)、拒绝采样(RS)和直接偏好优化(DPO)
模型官网:https://ai.meta.com/blog/meta-llama-3-1/
模型下载:https://llama.meta.com/llama-downloads/
注:模型太大,如何部署,部署在哪里。
2、模型蒸馏
目的:将大模型的知识传递给小模型的过程
大模型通常是一个性能较好的复杂模型,小模型是一个简单的、计算量较小的模型
小模型学到一些关键知识,从而在保持较高性能同时,降低计算成本和存储需求
原理:从教师模型传递给学生模型,教师模型会用自己的经验解释问题,学生模型从老师的解释中学到知识
模型蒸馏步骤:
1、老师模型 具备较好的性能,但计算量和存储量要求较高
2、创建一个学生模型,可以简单低存储
3、训练小模型,使用[原始的训练数据],还可以使用[大模型的输出结果],来学习关键的知识
4、最后,得到性能较好的小模型。保持较高的性能,降低了计算成本