亚时间线性算法

亚时间线性算法

图直径问题

定义:m个顶点的图,任意两点的距离储存在矩阵D中,求两点之间的最远距离。

算法:随机选择一行k,在这一行中找出最大的值作为直径。

算法分析:该算法的近似比为2
D i j ≤ D i k + D k j ≤ D k l + D k l ≤ 2 D k l D_{ij} \leq D_{ik} +D_{kj} \leq D_{kl} +D_{kl} \leq 2D_{kl} DijDik+DkjDkl+Dkl2Dkl

排序链表搜索的亚线性算法

定义:
排序双向有序链表R,给定元素x,判断x是否在R中。
这个R的数据结构,可以通过索引访问元素意味着可以随机抽取,并且每个元素都有指针可以访问相邻的有序元素。

算法:
1随机在R中抽取 θ ( R ) \theta(\sqrt R) θ(R )个元素。构成集合S
2在S中找出p,q使得 p ≤ x ≤ p p \leq x \leq p pxp且在S中p,q间没有其他元素。
3在p元素开始搜索x,搜索到返回是。

算法分析:
时间复杂度为 O ( n ) O(\sqrt n) O(n ),算法运行的时间为 O ( n ) O(\sqrt n) O(n )+(p,q间的元素个数)。S中的元素是随机选取,pq以|S|/n的概率选取且是相邻的,所以在R中pq间元素个数的期望为n/|S|

多边形交集问题

定义:判断两个简单多边形A,B是否相交

算法:
1 在A,B中等概率的选择 θ ( n ) \theta (\sqrt n) θ(n )个顶点构成集合 C A , C B C_A,C_B CA,CB
2 在 O ( n ) O(\sqrt n) O(n )的时间内检查 C A , C B C_A,C_B CA,CB是否相交,如果不相交则生成一条分隔 C A , C B C_A,C_B CA,CB的直线L
3 根据L判断A,B是否相交
我们使用L来定义 P A , P B P_A,P_B PA,PB a 是在L上A的点,a1,a2是a相邻的两个点如果这两个点在于 C A C_A CA在同侧,则 P A P_A PA为空。由于是简单多边形所以这两个点只有一个可能在 C A C_A CA的另一侧,我们这样这个点的方向遍历知道点再次通过L,我们将遍历的点构成 P A P_A PA。其大小为 O ( n ) O(\sqrt n) O(n )
所以A,B 相交可以转化为A与PB相交或者B与PA相交,现在将说明输入判断B与PA相交,首先判定 C b 和 P A C_b和P_A CbPA是否相交,再按照一开始的方法确定分隔线Lb,通过Lb生成Qb,那么B与PA相交等价于Qb与PA相交,而两者的期望规模都是 O ( n ) O(\sqrt n) O(n )

所以我们可以在 O ( n ) O(\sqrt n) O(n )的时间内解决该问题。

连通分量个数估计

算法思想:
我们可以通过bfs精确的求出连同分量的个数,这样每个点都要访问一次,时间复杂度为 O ( n d ) O(nd) O(nd),d为节点的最大度数。
我们可以通过随机化的方法进行估算,节点u所在的连同分量的结点数即为 n u n_u nu,那这个点的权重为 1 / n u 1/n_u 1/nu。这样精确的连同分量的个数是所有点的权重相加,但是我们考虑到如果 n u n_u nu过大则对最后的贡献很少,所以我们可以设置一个阈值( 2 / ϵ 2/\epsilon 2/ϵ),当超过该值时我们停止bfs对该连同分量的搜索。

算法:
随机取s( θ ( 1 / ϵ 2 ) \theta(1/\epsilon^2) θ(1/ϵ2))个点进行bfs的搜索,根据阈值与确定该点的权重,将这s个点的权重相加的到N,则连同分量的估计为 N n / s Nn/s Nn/s

算法分析
时间复杂度: O ( d ϵ 3 l o g ( 1 / ϵ ) ) O(\frac{d}{\epsilon^3}log(1/\epsilon)) O(ϵ3dlog(1/ϵ))
循环的轮数为 1 / ϵ 2 1/\epsilon^2 1/ϵ2,每一轮访问 2 / ϵ 2/\epsilon 2/ϵ个结点,在bfs的过程中代价为 d / ϵ d/\epsilon d/ϵ.因为在bfs的过程中需要确定点是否被访问所以要建立访问节点的平衡二叉树这样插入、访问的代价为 l o g ( 2 / ϵ ) log(2/\epsilon) log(2/ϵ),最终证明出时间复杂度。

质量分析
P r [ ∣ C ‘ − C ∣ > ϵ n ] ≤ 1 / 3 Pr[|C`-C|>\epsilon n]\leq1/3 Pr[CC>ϵn]1/3

### 回答1: 全零数组的判定是指判断一个数组中是否全部元素都为零的问题。对于一个数组,可以通过遍历数组的每个元素,判断是否为零来解决这个问题。但是这种方法的时间复杂度是O(n),其中n是数组的长度。在面对非常大的数组时,这种方法的效率较低。 针对全零数组的判定问题,可以采用线性算法进行优化。线性算法是指效率超过线性时间复杂度O(n)的算法。在Python中可以使用numpy库提供的优化方法来实现线性算法。 具体实现步骤如下: 1. 导入numpy库:import numpy as np 2. 定义一个数组arr,假设数组长度为n。 3. 使用numpy库的函数np.any()判断数组arr中是否存在非零元素。该函数会遍历数组arr,一旦遇到非零元素,就返回True;如果数组中全部元素都为零,就返回False。 4. 判断np.any(arr)的返回值,如果为True,则说明数组arr不全为零;如果为False,则说明数组arr全为零。 使用numpy库的np.any()函数进行全零数组判定的线性算法时间复杂度为O(1),效率较高。通过这种方法可以快速判断一个数组中是否全部元素都为零。 ### 回答2: 全零数组的判定是指判断一个给定数组是否全部为零。在Python中,可以使用线性算法来实现这个判定。 线性算法是指算法时间复杂度不是严格的线性时间复杂度,但是比线性时间复杂度更快的算法。对于全零数组的判定,可以通过以下步骤实现线性算法: 1. 首先,遍历给定的数组,计算数组的长度n。 2. 定义一个变量count,用于记录非零元素的个数。 3. 遍历数组,如果遇到非零元素,则count加1。 4. 如果count大于0,则说明数组中存在非零元素,即该数组不是全零数组,返回False。 5. 如果count等于0,则说明数组中不存在非零元素,即该数组是全零数组,返回True。 在这个算法中,遍历数组的时间复杂度为O(n),其中n为数组的长度。由于只需要遍历一次数组,因此这个算法时间复杂度是线性的。 下面是用Python代码实现这个线性算法的示例: def is_all_zeros(arr): n = len(arr) count = 0 for i in range(n): if arr[i] != 0: count += 1 if count > 0: return False else: return True arr = [0, 0, 0, 0] print(is_all_zeros(arr)) # 输出True arr = [1, 0, 0, 0] print(is_all_zeros(arr)) # 输出False 通过以上算法,我们可以快速判断一个给定的数组是否为全零数组。 ### 回答3: 全零数组的判定是指判断一个数组中的所有元素是否全部为零。在Python中,可以使用线性(sublinear)算法来判断全零数组。 线性算法是指算法的运行时间小于线性时间,但大于常数时间。对于全零数组的判定,一个常规的做法是逐个遍历数组中的元素,如果遇到非零元素则返回False,如果遍历完所有元素都为零则返回True。这种做法的时间复杂度为O(n),其中n是数组的长度。 而线性算法可以在更短的时间内完成全零数组的判定。一种常见的线性算法是使用位运算。具体做法是将数组元素逐个取反,并使用逻辑与运算符(&)将所有的元素进行与运算。如果最终结果为0,则表示原数组中的所有元素均为零,返回True;否则返回False。这种线性算法时间复杂度与数组的长度无关,通常可以在常数时间内完成判定。 下面是使用线性算法判定全零数组的Python代码示例: ``` python def is_all_zeros(arr): result = 0 for num in arr: result |= num # 将数组元素逐个取反并使用逻辑或运算符进行合并 return result == 0 # 示例测试 arr1 = [0, 0, 0, 0] arr2 = [0, 1, 0, 0] print(is_all_zeros(arr1)) # 输出 True print(is_all_zeros(arr2)) # 输出 False ``` 这个算法时间复杂度是O(1),因为无论数组的长度如何,都只需要进行一次遍历和一次位运算即可完成判定,效率非常高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值