亚时间线性算法

亚时间线性算法

图直径问题

定义:m个顶点的图,任意两点的距离储存在矩阵D中,求两点之间的最远距离。

算法:随机选择一行k,在这一行中找出最大的值作为直径。

算法分析:该算法的近似比为2
Dij≤Dik+Dkj≤Dkl+Dkl≤2DklD_{ij} \leq D_{ik} +D_{kj} \leq D_{kl} +D_{kl} \leq 2D_{kl}DijDik+DkjDkl+Dkl2Dkl

排序链表搜索的亚线性算法

定义:
排序双向有序链表R,给定元素x,判断x是否在R中。
这个R的数据结构,可以通过索引访问元素意味着可以随机抽取,并且每个元素都有指针可以访问相邻的有序元素。

算法:
1随机在R中抽取θ(R)\theta(\sqrt R)θ(R)个元素。构成集合S
2在S中找出p,q使得p≤x≤pp \leq x \leq ppxp且在S中p,q间没有其他元素。
3在p元素开始搜索x,搜索到返回是。

算法分析:
时间复杂度为O(n)O(\sqrt n)O(n),算法运行的时间为O(n)O(\sqrt n)O(n)+(p,q间的元素个数)。S中的元素是随机选取,pq以|S|/n的概率选取且是相邻的,所以在R中pq间元素个数的期望为n/|S|

多边形交集问题

定义:判断两个简单多边形A,B是否相交

算法:
1 在A,B中等概率的选择θ(n)\theta (\sqrt n)θ(n)个顶点构成集合CA,CBC_A,C_BCA,CB
2 在O(n)O(\sqrt n)O(n)的时间内检查CA,CBC_A,C_BCA,CB是否相交,如果不相交则生成一条分隔CA,CBC_A,C_BCA,CB的直线L
3 根据L判断A,B是否相交
我们使用L来定义PA,PBP_A,P_BPA,PB a 是在L上A的点,a1,a2是a相邻的两个点如果这两个点在于CAC_ACA在同侧,则PAP_APA为空。由于是简单多边形所以这两个点只有一个可能在CAC_ACA的另一侧,我们这样这个点的方向遍历知道点再次通过L,我们将遍历的点构成PAP_APA。其大小为O(n)O(\sqrt n)O(n)
所以A,B 相交可以转化为A与PB相交或者B与PA相交,现在将说明输入判断B与PA相交,首先判定Cb和PAC_b和P_ACbPA是否相交,再按照一开始的方法确定分隔线Lb,通过Lb生成Qb,那么B与PA相交等价于Qb与PA相交,而两者的期望规模都是O(n)O(\sqrt n)O(n)

所以我们可以在O(n)O(\sqrt n)O(n)的时间内解决该问题。

连通分量个数估计

算法思想:
我们可以通过bfs精确的求出连同分量的个数,这样每个点都要访问一次,时间复杂度为O(nd)O(nd)O(nd),d为节点的最大度数。
我们可以通过随机化的方法进行估算,节点u所在的连同分量的结点数即为nun_unu,那这个点的权重为1/nu1/n_u1/nu。这样精确的连同分量的个数是所有点的权重相加,但是我们考虑到如果nun_unu过大则对最后的贡献很少,所以我们可以设置一个阈值(2/ϵ2/\epsilon2/ϵ),当超过该值时我们停止bfs对该连同分量的搜索。

算法:
随机取s(θ(1/ϵ2)\theta(1/\epsilon^2)θ(1/ϵ2))个点进行bfs的搜索,根据阈值与确定该点的权重,将这s个点的权重相加的到N,则连同分量的估计为Nn/sNn/sNn/s

算法分析
时间复杂度:O(dϵ3log(1/ϵ))O(\frac{d}{\epsilon^3}log(1/\epsilon))O(ϵ3dlog(1/ϵ))
循环的轮数为1/ϵ21/\epsilon^21/ϵ2,每一轮访问2/ϵ2/\epsilon2/ϵ个结点,在bfs的过程中代价为d/ϵd/\epsilond/ϵ.因为在bfs的过程中需要确定点是否被访问所以要建立访问节点的平衡二叉树这样插入、访问的代价为log(2/ϵ)log(2/\epsilon)log(2/ϵ),最终证明出时间复杂度。

质量分析
Pr[∣C‘−C∣>ϵn]≤1/3Pr[|C`-C|>\epsilon n]\leq1/3Pr[CC>ϵn]1/3

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值