P1217 [USACO1.5]回文质数 Prime Palindromes
题目描述
因为 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。
写一个程序来找出范围 [a,b] (5 <= a < b <= 100,000,000)a,b( 一亿)间的所有回文质数。
输入输出格式
输入格式:
第 1 行: 二个整数 a 和 b .
输出格式:
输出一个回文质数的列表,一行一个。
输入输出样例
输入样例#1:
5 500
输出样例#1:
5
7
11
101
131
151
181
191
313
353
373
383
说明
Hint 1: Generate the palindromes and see if they are prime.
提示 1: 找出所有的回文数再判断它们是不是质数(素数).
Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.
提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。
题目翻译来自NOCOW。
USACO Training Section 1.5
产生长度为5的回文数:
#include<stdio.h>
#include<math.h>
#define N 100000000
long int a[N];
int Sushu(long int n)
{
int j;
for( j=3;j<=sqrt(n);j++)
if(n%j==0)return 0;
if(j>sqrt(n))return 1;
else return 0;
}
int main()
{
int c=0;
long int left,right;
scanf("%ld %ld",&left,&right);
//1位数的回文数
for (int d1 = 1; d1 <= 9; d1+=2){
a[c++]=d1;
}
//2位数的回文数
for (int d1 = 1; d1 <= 9; d1+=2) {
a[c++] = d1*10 + d1;
}
//3位数的回文数
for (int d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数
for (int d2 = 0; d2 <= 9; d2++) {
a[c++] = 100*d1 + 10*d2 + d1;
}
}
//5位数的回文数
for (int d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数
for (int d2 = 0; d2 <= 9; d2++) {
for (int d3 = 0; d3 <= 9; d3++) {
a[c++] = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
}
}
}
//7位数的回文数
for (int d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数
for (int d2 = 0; d2 <= 9; d2++) {
for (int d3 = 0; d3 <= 9; d3++) {
for(int d4 = 0; d4 <= 9; d4++ ){
a[c++] = 1000000*d1 + 100000*d2 +10000*d3 + 1000*d4 + 100*d3 + 10*d2 + d1;//(处理回文数...)
}
}
}
}
for(int i=0;i<c;i++)
{
if(a[i]>=left&&a[i]<=right&&Sushu(a[i])==1)
printf("%ld\n",a[i]);
}
return 0;
}
第二种:暴力+打表
#include<bits/stdc++.h>
using namespace std;
const int MAX = 1e3;
int arr[MAX]={2,3,5,7,11,101,131,151,181,191,313,353,373,383,727,757,787,797,919,929,10301,10501,10601,11311,11411,12421,12721,12821,13331,13831,13931,14341,14741,15451,15551,16061,16361,16561,16661,17471,17971,18181,18481,19391,19891,19991,30103,30203,30403,30703,30803,31013,31513,32323,32423,33533,34543,34843,35053,35153,35353,35753,36263,36563,37273,37573,38083,38183,38783,39293,70207,70507,70607,71317,71917,72227,72727,73037,73237,73637,74047,74747,75557,76367,76667,77377,77477,77977,78487,78787,78887,79397,79697,79997,90709,91019,93139,93239,93739,94049,94349,94649,94849,94949,95959,96269,96469,96769,97379,97579,97879,98389,98689,1003001,1008001,1022201,1028201,1035301,1043401,1055501,1062601,1065601,1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,1123211,1126211,1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,1177711,1178711,1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,1212121,1215121,1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,1486841,1489841,1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,1548451,1550551,1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,1589851,1594951,1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,1633361,1640461,1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,1685861,1688861,1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,1963691,1968691,1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,1993991,1995991,1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,3072703,3073703,3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,3135313,3140413,3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,3198913,3211123,3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,3443443,3444443,3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,3487843,3503053,3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,3586853,3589853,3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,3635363,3643463,3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,3716173,3717173,3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,3983893,3991993,3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,7057507,7065607,7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,7100017,7114117,7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,7156517,7158517,7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,7250527,7256527,7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,7594957,7600067,7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,7665667,7666667,7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,7718177,7722277,7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,7774777,7778777,7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,7831387,7832387,7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,9136319,9149419,9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,9209029,9212129,9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,9277729,9280829,9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,9351539,9357539,9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,9440449,9446449,9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,9779779,9781879,9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,9818189,9820289,9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,9896989,9902099,9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,9927299,9931399,9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,9989899};
bool isPalindroms(const long long val){
long long k=0;
long long cval=val;
while(cval){
k=k*10+cval%10;
cval/=10;
}
return val==k;
}
bool isPrime(long long val){
for(int i=2;i*i<=val;i++){
if(val%i==0)
return false;
}
return true;
}
int main(){
long long a,b;
//freopen("out","w",stdout);
cin>>a>>b;
for(long long i=2;i<781;i++){
if(arr[i]>=a && arr[i]<=b)
cout<<arr[i]<<endl;
}
//cout<<endl;
//cout<<"共:"<<k<<endl;
return 0;
}
第三种:
//注意特判:
//1.题目给出的范围是:5<=l,r<=1,0000,0000.所以1位的回文质数只有5和7;
//2.2位的回文质数只有11;
//3.通过某种玄学奥数方法可以证明偶数位的回文数都不是质数,可以跳过;
//4.9位的数只有1亿一个,而且既不是回文数也不是质数,所以跳过过。
#include<cmath>
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int a[10];
int num;
int l, r;
int x, y;
bool bo;
bool prime(int num)
{
if (num == 2)
return true;
if (num < 2)
return false;
int s = sqrt((double)num);
for (int i = 2; i <= s; i++)
{
if (num%i == 0)
return false;
}
return true;
}
void cal(int now,int len)//now为当前位置,len为总长度
{
if (now == (len + 1) / 2)
{
for (int i = len; i > now; i--)
a[i] = a[len - i+1];//完善回文串
int num = 0;
for (int i = 1; i <= len; i++)
{
num = num * 10 + a[i];
}
if (num < l)
return;
if (num > r)
{
bo = false;
return;
}
if (prime(num))
cout << num << endl;
return;//这个一定不能漏
}
int i;
if (now)//不为第0位时从0开始
i = 0;
else//首位不能为0
i = 1;
for (i=i; i <= 9; i++)
{
if (bo == false)//如果出现过大于r的数,就跳出
return;
a[now + 1] = i;
cal(now + 1, len);
}
return;
}
int main()
{
cin >> l >> r;
x = log10(l)+1;
y = log10(r)+1;
for (int i = x; i <= y; i++)
{
if (i == 1)
{
if (5 >= l && 5 <= r)
cout << 5 << endl;
if (7 >= l && 7 <= r)
cout << 7 << endl;
continue;
}
else if (i == 2)
{
if (11 >= l && 11 <= r)
cout << 11 << endl;
continue;
}
else if (i % 2 == 0)
continue;
else if (i == 9)
break;
bo = true;
cal(0, i);//从i位数的第0位开始计算
}
system("pause");
return 0;
}
P1036 选数
题目描述
#include<iostream>
using namespace std;
int K[30], n, k;
bool S[30];
int totals = 0;
bool is_prime(int x)
{
for (int i = 2; i *i<x; ++i)
{
if (x%i == 0)
return false;
}
return true;
}
void Catch(int step, int sum, int count)
{
if (count == k)//计数个数等于k时,代表抓取的次数到达k值
{
if (is_prime(sum))
{
totals++;//记录素数次数
}
return;//返回上一次递归。
}
for (int i = 1; i <=n; ++i)//相当于全排
{
if (!S[i]&&i>step)//未被抓取且i在step之后
{
S[i] = 1;//标记为已抓取
Catch(i, sum + K[i], count + 1);//递归
S[i] = 0;//递归结束还原标记,向后扫描。
}
}
}
int main()
{
cin >> n >> k;
for (int i = 1; i <= n; ++i)
{
cin >> K[i];//将n录入数组标记为0至n-1。
S[i] = 0;
}
Catch(0, 0, 0);//从数组下标为0,当前和为0,加入个数为0开始遍历。
cout << totals << endl;
return 0;
}
P1149 火柴棒等式
题目描述
第一种
#include<iostream>
using namespace std;
int main()
{
int m;
int a[2001] = { 6 }, b, c[10] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 },j,s=0; //0123456789分别对应的火柴数放在c[]中并初始化a[0]
cin >> m;
for (int i = 1; i < 2000; i++) //对应的数所需要的火柴棒
{
j = i;
while (j > 0)
{
a[i] = a[i] + c[j % 10];
j = j / 10;
}
}
for (int i = 0; i < 1000; i++) //
{
for (int j = 0; j < 1000; j++)
{
if (a[i] + a[j] + a[i + j] + 4 == m) s++;
}
}
cout << s << endl;
return 0;
}
第二种:
#include<bits/stdc++.h>
using namespace std;
int num[10010] = { 6,2,5,5,4,5,6,3,7,6};
int main()
{
for (int i = 10; i <= 2000; i++)
{
int k = i;
while (k)
{
num[i] += num[k % 10];
k /= 10;
}
}
int n;
cin >> n;
int sum = 0;
for(int i=0;i<=999;i++)
for (int j = 0; j <= 999; j++)
{
if (num[i] + num[j] + num[i + j] + 4 == n)
{
sum++;
}
}
cout << sum;
return 0;
}
P1036 选数
#include<iostream>
using namespace std;
int K[30], n, k;
bool S[30];
int totals = 0;
bool is_prime(int x)
{
for (int i = 2; i *i<x; ++i)
{
if (x%i == 0)
return false;
}
return true;
}
void Catch(int step, int sum, int count)
{
if (count == k)//计数个数等于k时,代表抓取的次数到达k值
{
if (is_prime(sum))
{
totals++;//记录素数次数
}
return;//返回上一次递归。
}
for (int i = 1; i <=n; ++i)//相当于全排
{
if (!S[i]&&i>step)//未被抓取且i在step之后
{
S[i] = 1;//标记为已抓取
Catch(i, sum + K[i], count + 1);//递归
S[i] = 0;//递归结束还原标记,向后扫描。
}
}
}
int main()
{
cin >> n >> k;
for (int i = 1; i <= n; ++i)
{
cin >> K[i];//将n录入数组标记为0至n-1。
S[i] = 0;
}
Catch(0, 0, 0);//从数组下标为0,当前和为0,加入个数为0开始遍历。
cout << totals << endl;
return 0;
}
P1028 数的计算
第一种:通过找规律,找出递推式
推荐链接:添加链接描述
#include <iostream>
using namespace std;
int f[1005];
int main()
{
int n;
cin>>n;
f[1]=1;
for(int i=2;i<=n;i++)
{
f[i]=f[i-1];
if(i%2==0)
f[i]=f[i]+f[i/2];
}
cout<<f[n];
return 0;
}
//规律:当n=0,n=1时,ans=1;
//n=2,ans=2; n=3,ans=2;
//n=4,ans=4; n=5,ans=4;
//n=6,ans=6; n=7,ans=6;
//2n与2n+1(n为非负整数)的答案是一样的 这就是第一个规律
//
//当我们把8和8下面的左三棵子树放在一起(即8和下面三列),并将所有的8都改成7,我们能发现,我们得到了n=7时的所有解;
//我们再把最右端的子树(即剩下的部分)中的所有8删去,我们得到了n=4时的所有解
//就这样,我们可以得到一个递推式,
// n%2==0时 f(n)=f(n-1)+f(n/2)
// n%2==1时 f(n)=f(n-1)
//
//设f[i]为初始值为i时的满足条件总数,
//可得f[i]=f[1]+f[2]+f[3]+...+f[i/2];容易想到f[1]=1;
//因为f[i]=f[1]+f[2]+f[3]+...+f[i/2]
//所以当i为奇数时f[i]=f[i-1],当i为偶数时f[i]=f[i-1]+f[i/2];
//
第二种:递归
#include<iostream>
using namespace std;
const int maxn=1e3+10;
int a[maxn];
int dp(int n){
if(a[n])
return a[n];
int ans=0;
for(int i=0;i<=n/2;i++){
if(a[i]==0)
a[i]=dp(i);
ans+=a[i];
}
return ans;
}
int main(){
int n=6;
cin>>n;
a[0]=a[1]=1;
cout<<dp(n)<<endl;
return 0;
}